
Exploiting Glue Clauses to Design Effective CDCL
Branching Heuristics

Md Solimul Chowdhury, Martin Müller, and Jia-Huai You

Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada.

{mdsolimu, mmueller, jyou}@ualberta.ca

Abstract. In conflict-directed clause learning (CDCL) SAT solving, a state-of-
the-art criterion to measure the importance of a learned clause is called literal
block distance (LBD), which is the number of distinct decision levels in the
clause. The lower the LBD score of a learned clause, the better is its quality. The
learned clauses with LBD score of 2, called glue clauses, are known to possess
high pruning power. In this work, we relate glue clauses to decision variables.
First, we show experimentally that branching decisions with variables appear-
ing in glue clauses, called glue variables, are more conflict efficient than with
nonglue variables. This observation motivated the development of a structure-
aware CDCL variable bumping scheme, which increases the heuristic score of a
glue variable based on its appearance count in the glue clauses that are learned
so far by the search. Empirical evaluation shows the effectiveness of the new
method on the main track instances from SAT Competitions 2017 and 2018 with
four state-of-the-art CDCL SAT solvers. Finally, we show that the frequency of
learned clauses that are glue clauses can be used as a reliable indicator of solving
efficiency for some instances, for which the standard performance metrics fail to
provide a consistent explanation.

Keywords: CDCL SAT · Branching Heuristics · Glue Clauses

1 Introduction

Given a formula F of boolean variables, the task of SAT solving is to determine a vari-
able assignment that satisfies F or to report the unsatisfiability of F in case no such
assignment exists. SAT is known to be NP-complete [5]. Despite the hardness, mod-
ern CDCL SAT solvers can solve large real-world problems from important domains,
such as hardware design verification [8], software debugging [4], planning [21], and
encryption [18, 23], sometimes with surprising efficiency. This is the result of a careful
combination of its key components, such as preprocessing [6, 10] and inprocessing [11,
17], robust branching heuristics [14, 13, 19], efficient restart policies [2, 20], intelligent
conflict analysis [22], and effective clause learning [19].

Clause learning prunes search space. As conflict discovery is the only way to learn
clauses, the rate of discovery is critical for CDCL SAT solvers. As a large amount of
learned clauses reduces the overall performance, the management of the learned clause
database also becomes a key component of a modern CDCL SAT solver [19, 22].

2 Md Solimul Chowdhury, Martin Müller, and Jia-Huai You

In earlier CDCL SAT solvers, the size and recent activities of learned clauses were
the dominant criteria for determining the relevance of learned clauses [7]. The CDCL
SAT solver Glucose [1] was the first to apply a new measure called literal block distance
(LBD), which indicates the number of distinct decision levels in a learned clause. The
learned clauses with LBD score of 2, called glue clauses, are of particular interest [1, 20]
because a glue clause connects a block of closely related variables, and thus a relatively
small number of decisions are needed to make it a unit clause (i.e., a clause that has all
but one literals assigned under the current partial assignment). A glue clause therefore
may cause a faster generation of conflicts within fewer numbers of decisions, which
leads to pruning of the search space. Simply put, glue clauses have higher potential to
reduce search space more quickly than other learned clauses. For this reason, all modern
CDCL SAT solvers permanently store glue clauses.

Inspired by the intuitive characteristics of glue clauses, we ask the following ques-
tion: Can glue clauses be used to help re-rank decision variables to improve search
efficiency? We call the decision variables that have appeared in at least one glue clause
up to the current search state glue variables, and others nonglue variables.

The main contributions of this paper are:

– We conduct an experiment using the 750 instances from the main track of SAT
Competition 2017 and 2018 (abbreviated as SAT-2017 and SAT-2018, respectively)
with four state-of-the-art CDCL SAT solvers: glucose 4.11 (just called Glucose),
MAPLECOMSPS_PURE_LRB2 (abbreviated as MapleLRB), Maple_LCM_Dist3

(abbreviated as MLD, winner of SAT-2017) and MapleLCMDistChronoBT4 (ab-
breviated as MLD_CBT, winner of SAT-2018). Our experiment shows that deci-
sions with glue variables are more conflict efficient than those with nonglue vari-
ables. Furthermore, glue variables are picked up by CDCL branching heuristics
disproportionately more often.

– We design a structure-aware variable score bumping method called Glue Bumping
(GB), which dynamically bumps activity score of a glue variable based on its cur-
rent activity score and (normalized) glue level, which is a measure of the count of
glue clauses in which the variable appears. The method is simple to implement.

– We implemented the GB method on top of the same four SAT solvers mentioned
above. For the 750 instances from SAT-2017 and SAT-2018, all GB extensions
solve more instances than the baselines and achieve lower PAR-2 scores5. One
of our extended solver solves 9 additional instances over the instances from SAT-
2017. According to [2], this level of performance gain closely resembles to the
introduction of a critical feature, which is remarkable, given the simplicity of the
new method.

– We provide evidence that the frequency of glue clauses in learned clauses may
serve as a reliable indicator of solving efficiency. In [16], the authors reported cor-

1 https://www.labri.fr/perso/lsimon/glucose/
2 https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/
3 https://baldur.iti.kit.edu/sat-competition-2017/solvers/
4 http://sat2018.forsyte.tuwien.ac.at/solvers/main_and_glucose_hack/
5 A metric used in SAT competitions. Defined as the sum of all runtimes for solved instances +
2 ∗ timeout for unsolved instances; lowest score wins.

Exploiting Glue Clauses to Design Effective CDCL Branching Heuristics 3

relations between solving efficiency of branching heuristics and standard metrics
based on the global learning rate (GLR) and average LBD (aLBD) scores - higher
solving efficiency is indicated by higher average GLR and lower average aLBD. We
show that these two measures do not provide a consistent explanation of solving ef-
ficiency for some subsets of SAT-2017 and SAT-2018, for which the correlations
are highly expected to hold. However, using a new measure based on the frequency
of learned clauses that are glue, we are able to provide a consistent explanation.

The next section provides preliminaries. Section 3 reports an experiment on the
role of glue variables in CDCL SAT solving, which motivates the design of a bumping
scheme in Section 4. Section 5 reports an experimental analysis. In Section 7 we explain
why our standard bumping scheme does not work very well for Glucose and how to fix
the issue. Section 8 reports some additional experimental results with the GB method.
Section 9 is about related work and future directions can be found in Section 10.

2 Preliminaries

2.1 Inner Working of a CDCL Solver

A CDCL SAT solver works by extending an initially empty partial assignment using
two operations in an interleaving fashion: a branching decision and unit propagation
(UP). A branching decision selects an unassigned variable by using a branching heuris-
tic and assigns a boolean value to it. Following a branching decision, UP simplifies F
by deducing a new set of implied variable assignments. UP may lead to a conflict due to
a falsified or conflicting clause. Conflict analysis determines the root cause of a conflict
and generates a learned clause that is added to F to prevent the conflict from reap-
pearing in the future, thereby pruning the search. Search continues from a backjumping
level computed from the learned clause. We refer the reader to [3] for more details on
CDCL SAT solving.

2.2 Terminologies

We review some terminologies used in this paper.

– Activity Based Branching Heuristics The standard CDCL branching heuristic,
such as VSIDS [19], LRB [14] and CHB [13], maintains an activity score for each
variable of a given formula. During the search, a variable’s involvement in conflicts
contribute to the increments of its activity score. At any given state of the search,
the activity score of a variable measures its involvement in the recent conflicts.

– Global Learning Rate (GLR) This is defined as nc
nd

, where nc is the number of
conflicts generated in nd decisions [16], i.e., GLR measures the average number of
conflicts that a solver generates per decision.

– Literal Block Distance (LBD) The LBD of a learned clause θ indicates the number
of distinct decision levels in θ [1]. If LBD(θ) = k, then θ contains k propagation
blocks, where each block has been propagated within the same branching decision.
Intuitively, variables in a block are closely related. Learned clauses with lower LBD
score tend to have higher quality.

4 Md Solimul Chowdhury, Martin Müller, and Jia-Huai You

– Glue Clauses These are the learned clauses with LBD score of 2 [1], which have
the potential for fast propagations of truth values under a partial assignment.

Let F be a SAT formula. Suppose a CDCL solver Ψ is solving F and s is its current
search state. At s, Ψ has taken d > 0 decisions and has learned a set of glue clauses.
A glue variable is a variable that has appeared in at least one glue clause up to the
search state s. Other variables that have not appeared in a glue clause are called nonglue
variables. A glue decision is the branching decision that selects a glue variable and a
nonglue decision is the branching decision that selects a nonglue variable. Suppose that
until s, Ψ has taken gd glue decisions (resp. ngd nonglue decisions) which generated
gc conflicts (resp. ngc conflicts).

– Learning Rate (LR): In contrast with GLR (global learning rate) where the rate of
conflict generation is over all decisions, we are also interested in such rates over
glue decisions only or over nonglue decisions only, up to a search state. LR with
glue decisions is defined as gc

gd , while LR with nonglue decisions is defined as ngc
ngd .

– Average LBD (aLBD): This is the average LBD score per conflict generated solely
by glue decisions or solely by nonglue decisions. Let sumLBDgc (resp. sumLBDngc)
be the sum of LBD scores of the learned clauses derived from those gc (resp. ngc)
conflicts. The aLBD with glue decisions (resp. nonglue decisions) is defined as
sumLBDgc

gc (resp. sumLBDngc

ngc).

3 Conflict Efficiency of Glue Variables

In this section, we report an experiment that studies the role played by glue variables
in CDCL SAT solving, which shows that glue decisions are more conflict efficient (i.e.,
achieve higher average LR and lower average aLBD, in general) than nonglue deci-
sions and the branching heuristics of modern CDCL SAT solvers exhibit bias towards
selection of glue variables over nonglue variables.

The solvers in this experiment are Glucose, MapleLRB, MLD, and MLD_CBT.
The branching heuristics used in the first two solvers are, respectively, VSIDS [19] and
LRB [14]. For the next two, the branching heuristics are based on a combination of
three heuristics, VSIDS, LRB, and Dist [24].

We run all 750 instances used in the main track of SAT-2017 (350 instances) and
2018 (400 instances) with 5000 seconds timeout limit per instance. We instrumented the
four solvers to collect the following statistics for each instance: (i) the numbers of glue
and nonglue decisions, (ii) LR and aLBD for both glue and nonglue decisions, and (iii)
the numbers of glue and nonglue variables. For each instance, all the measurements are
taken at the final search state (i.e., either after satisfiability/unsatisfiability is determined
or after timeout). All experiments are run on a Linux workstation with 64 Gigabytes
RAM and processor clock speed of 2.40 GHZ.

3.1 Conflict Generation Power of Glue Variables

Table 1 shows a comparison of average LR and average aLBD for glue and nonglue
decisions, grouped by satisfiable, unsatisfiable and unsolved instances. Comparing col-

Exploiting Glue Clauses to Design Effective CDCL Branching Heuristics 5

umn D1 and D2, on average, all solvers achieve significantly higher LR with glue deci-
sions. For all three categories of instances, MLD and MLD_CBT achieve significantly
lower average LBD (compare columns E1 and E2) for glue decisions. For Glucose and
MapleLRB, the numbers under E1 and E2 are largely comparable, without showing
significant gaps.

(A)
Systems

(B)
Type

(C)
#Inst

(D)
Average of Learning Rate (LR)

(E)
Average of aLBD

(D1) Glue Decisions (D2) Nonglue Decisions (E1) Glue Decisions (E2) Nonglue Decisions

Glucose
SAT 180 0.55 0.41 18.44 18.18

UNSAT 191 0.56 0.44 11.2 11.4
Unsolved 379 0.57 0.48 24.76 25.48

MapleLRB
SAT 194 0.47 0.38 20.18 19.25

UNSAT 190 0.58 0.46 11.92 12.39
Unsolved 366 0.48 0.44 34.86 33.39

MLD
SAT 235 0.47 0.19 31.76 40.55

UNSAT 207 0.59 0.27 12.8 30.1
Unsolved 308 0.52 0.37 24.23 34.09

MLD_CBT
SAT 238 0.51 0.21 32.1 41.9

UNSAT 215 0.61 0.27 13.17 24.74
Unsolved 297 0.53 0.37 25.25 36.7

Table 1. Comparison of average LR (higher is better) and average aLBD (lower is better) for glue
and nonglue decisions.

Fig. 1. Comparison of LR values for glue and nonglue decisions. Instances are sorted by the LR
values of glue decisions. The number at the top of each plot represents the percentage of instances,
for which LR of glue decisions are higher than LR of nonglue decisions.

6 Md Solimul Chowdhury, Martin Müller, and Jia-Huai You

Fig. 2. Comparison aLBD scores (in Log Scale). Instances are sorted by the aLBD of glue deci-
sions. The number at the top of each plot represents the percentage of instances, for which aLBD
of glue decisions are lower than aLBD of nonglue decisions.

To confirm that the average values for these 2 measures reported in Table 1 reflect
the actual distribution of these measures, we plot the LR and aLBD values for the 750
instances for the four solvers.

Figure 1 shows per instance LR values for both glue and nonglue decisions for the
four solvers in four subplots. For all solvers and for large majority of the instances, glue
decisions achieve higher LR than nonglue decisions.

Figure 2 shows per instance aLBD scores (in Log scale) for the 750 instances for
glue and nonglue decisions.

– For Glucose and MapleLRB (first and second plots, Figure 2), for more than half of
the instances, the aLBD score of the learned clauses by nonglue decisions is lower
than the aLBD score of the learned clauses by glue decisions. The average values
of aLBD under columns E1 and E2 in Table 1 for Glucose and MapleLRB reflect
the ground data.

– We observe quite a different scenario in case of MLD and MLD_CBT (third and
fourth plot, Figure 2). The aLBD scores of the learned clauses by glue decisions are
lower for large majority of the instances. Again, the average values of aLBD under
columns E1 and E2 in Table 1 for MLD and MLD_CBT reflect the ground data.

Overall, glue decisions are more conflict efficient than nonglue decisions for all the
tested solvers. For average aLBD with glue decisions, the winners of the last two SAT
competitions, MLD and MLD_CBT, generate substantially lower (better) values.

3.2 Selection Bias of Glue Variables

We are interested in the question: Do conflict guided CDCL branching heuristics exhibit
any bias towards glue variables over nonglue variables?

Exploiting Glue Clauses to Design Effective CDCL Branching Heuristics 7

Given a SAT formula F and a solver Ψ, we define glue fraction (GF) (resp. nonglue
fraction (NF)) as the fraction of variables in F that are glue (resp. nonglue) variables,
after Ψ ends its run withF . GF (resp. NF) measures the pool size of glue (resp. nonglue)
variables in F with respect to the total number of variables in F .

Over the 750 instances, column B of Table 2 shows the average GF and average
percentage of glue decisions and column C shows the average nonglue fraction and the
average percentage of nonglue decisions. It shows that for all the four solvers, on aver-
age, the pool size of glue variables is significantly smaller than the pool size of nonglue
variables (columns B1 and C1). For all the four solvers, on average, glue decisions rela-
tive to glue variables pool size are higher (column B2) than nonglue decisions (column
C2) relative to the nonglue variables pool size.

(A)
Systems

(B)
Average for Glue Variable

(C)
Average for Nonglue Variables

GF (B1) Glue Decisions % (B2) NF (C1) Noglue Decisions % (C2)
Glucose 0.25 65.43% 0.75 34.57%
MapleLRB 0.21 63.14% 0.69 36.86%
MLD 0.22 47.60% 0.78 52.60%
MLD_CBT 0.22 48.76% 0.78 51.24%

Table 2. Biased Selection of Glue Variables

In summary, the four state-of-the-art CDCL SAT solvers make a much larger per-
centage of glue decisions against relatively smaller pools of glue variables. This shows
the bias of these solvers towards selecting glue variables in branching decisions.

4 Activity Score Bumping for Glue Variables

From the above analysis, it is clear that decisions with glue variables are more conflict
efficient than with nonglue variables. An interesting question is how we can exploit this
empirical characteristic for more efficient SAT solving. Here, we present a score bump-
ing method, called Glue Bump (GB), which bumps the activity score of glue variables.
The amount of bumping for a glue variable depends on the appearance count of that
variable in glue clauses and its current activity score.

Glue Level Let G be the set of learned glue clauses until search state s. The glue level
of a glue variable v, denoted gl(v), is defined to be the number of glue clauses in G in
which v appears.6 A higher glue level indicates higher potential to create conflicts.

4.1 The GB Method

By using the current activity scores and (normalized) glue levels of glue variables (we
will comment on normalization shortly), the GB method bumps the activity scores of

6 We omit the parameter s since the glue level of a variable is always computed w.r.t. a underly-
ing search state by default, without confusion.

8 Md Solimul Chowdhury, Martin Müller, and Jia-Huai You

glue variables. This gives higher preference to recently active glue variables with high
glue levels. The GB method is simple to implement and conveniently integrates with
activity based standard CDCL heuristics.

The GB method modifies a CDCL SAT solver Ψ by adding the following two pro-
cedures, which are called at different states of the search. We denote by Ψgb the GB
extension of the baseline solver Ψ.

Alg. 1: Increase Glue Level Alg. 2: Bump Glue Variable
Input: A newly learned glue clause θ Input: A glue variable v
1 For i← 1 to |θ|
2 v ← varAt(θ, i)
3 gl(v)← gl(v) + 1
4 End

1 bfv ← activity(v) ∗
(gl(v)

|G|

)
2 activity(v)← activity(v) + bfv

Increase Glue Level: Whenever Ψgb learns a new glue clause θ, it invokes Alg. 1.
For each variable v in θ, the glue level of v is increased by 1 (line 3).

Bump Glue Variable: Alg. 2 bumps a glue variable v. It computes the bumping
factor for v, denote bfv , by combining both of the current activity score and normalized
glue level of v (line 1). The bumping is performed by adding the bumping factor of v to
the activity score of v, which becomes the new activity score for v (line 2).

Glue Level Normalization: The glue level of a glue variable can grow unboundedly
with the discovery of more and more glue clauses. The activity score of a glue variable
also grows, but at a different rate. Thus scaling the glue level is necessary.

We normalize gl(v) to (0,1]7 by

gl(v)

|G|

where G is the set of glue clauses discovered by the search so far. The normalization
scales the glue levels of glue variables by the total number of glue clauses discovered
by the search so far.

Delayed Bumping of Glue Variables: Ψgb does not perform the bumping of v right
after its hosting clause θ is discovered. It delays the bumping (i.e., the invocation of the
Bump Glue Variable procedure) of v until it is unassigned by backtracking. This is a
subtle point which we explain below.

– The glue clause θ is the latest learned clause and all the variables in θ including
v are assigned at the current search state. At this stage, any score bumping that v
receive would not be used until it gets unassigned.

7 At a given state of the search, a given glue variable v appears in at least one glue clause. So, the
glue level of v (which is the count of number of glue clauses in which v appears), gl(v) > 0.
After dividing gl(v) with |G|, the normalized glue level remains larger than 0. Hence, the
normalization normalizes the glue level within the range (0,1].

Exploiting Glue Clauses to Design Effective CDCL Branching Heuristics 9

– Let T = de − ds > 0 be the decision window starting from the decision ds that
generates θ and ending at the decision de in which v gets unassigned. Within T , the
search may generate more glue clauses in some of which v may appear. Further-
more, v may get involved in several conflicts during T and may have its activity
score increased. It is clear that the bumping factor of v computed at de reflects a
more recent measure than the one computed at ds. By delaying the bumping of
v until de when v has just got unassigned and become a candidate variable for
branching, the GB method boosts the activity score of v by a more recent bumping
factor.

5 Implementation and Experiments

5.1 Implementation

We implemented the GB method on top of the CDCL SAT solvers Glucose, MapleLRB,
MLD, and MLD_CBT and call the extended solvers Glucosegb, MapleLRBgb, MLDgb,
and MLD_CBTgb, respectively. The baseline solvers do not distinguish between glue
and nonglue variables, except Glucose, which bumps activity scores of variables that
are propagated from a glue clause.

In Glucosegb and MapleLRBgb, on the unassignment of a glue variable, the GB
method updates the activity score of that glue variable by VSIDS and LRB, respec-
tively, which are the heuristics used in their baselines. As remarked earlier, the baseline
solvers MLD and MLD_CBT employ three heuristics, namely DIST, VSIDS and LRB,
which are activated at different phases of the search. At any given phase, on the unas-
signment of a glue variable, MLDgb and MLD_CBTgb update the activity score of that
glue variable for the currently active heuristic at that phase.

5.2 Experiments

We conduct our experiments with four extended solvers with the same set of 750 in-
stances on the same machine with 5000 seconds timeout per instance. Here, we present
comparisons between the extended solvers and their counterpart baselines in terms of
solved instances, solved time and PAR-2 score.

Solved Instances Comparison Table 3 compares the four extended solvers with their
baselines. Both MapleLRBgb and MLDgb solves 13 more instances (9 SAT, 4 UNSAT
for the former and 11 SAT, 2 UNSAT for the latter). Glucosegb solves 4 more instances
(2 SAT, 2 UNSAT), and MLD_CBTgb solves 2 additional instances (both SAT).

According to Audemard and Simon [2], solving 10 or more instances on a fixed set
of instances from a competition by using a new technique, generally shows a critical
feature. MapleLRBgb solves 9 more instances over the instances from SAT-2017 and
and MLDgb solves 8 additional instances over the instances from SAT-2018. The gains
with MapleLRBgb and MLDgb are significant and closely resemble to the introduction
of a critical feature.

10 Md Solimul Chowdhury, Martin Müller, and Jia-Huai You

Systems SAT Comp-17 SAT Comp-18 SAT Comp-2017 and 2018
SAT UNSAT Total PAR-2 SAT UNSAT Total PAR-2 SAT UNSAT Total PAR-2

Glucose 83 96 179 1893 97 95 192 2274 180 191 371 4167
Glucosegb 86 (+3) 96 (+0) 182 (+3) 1868 96 (-1) 97 (+2) 193 (+0) 2273 182 (+2) 193 (+2) 375 (+4) 4141
MapleLRB 80 95 175 1897 114 95 209 2069 194 190 384 3966
MapleLRBgb 87 (+7) 97 (+2) 184 (+9) 1824 117 (+3) 96 (+1) 213 (+4) 2027 204 (+10) 193 (+3) 397 (+13) 3851
MLD 99 106 205 1635 136 101 237 1807 235 207 442 3442
MLDgb 103 (+4) 107 (+1) 210 (+5) 1593 143 (+7) 102 (+1) 245 (+8) 1725 246 (+11) 209 (+2) 455 (+13) 3318
MLD_CBT 103 113 216 1565 135 102 237 1800 238 215 453 3365
MLD_CBTgb 102 (-1) 114 (+1) 216 (+0) 1539 138 (+3) 101 (-1) 239 (+2) 1756 240 (+2) 215 (+0) 455 (+2) 3295

Table 3. Comparison of the four baseline solvers with their GB extensions for the instances from
SAT-2017 and SAT-2018. The PAR-2 scores are scaled down by the factor of 1

10,000
.

Solve Time Comparison Figure 3 compares the performance of Glucosegb (blue line),
MapleLRBgb (red line), MLDgb (yellow line) and MLD_CBTgb (purple line) against
their baselines. This figure plots the difference in the number of instances solved as a
function of time. At most points in time, each of MapleLRBgb, MLDgb, and MLD_CBTgb

solves more problems. This is particularly pronounced for MLDgb (yellow line) at ear-
lier time points, for MLD_CBTgb (purple line) on mid range time points. The improve-
ment for MapleLRBgb (red line) remains steady, with a brief downward slope in the
middle. Glucosegb performs slightly worse than Glucose at most of the times.

Fig. 3. Solve time comparisons. For any point above 0 in the vertical axis, our extensions solve
more instances than their baselines at the time point in the horizontal axis.

PAR-2 Score Comparison In SAT competitions, solvers are ranked based on their
PAR-2 scores. A PAR-2 score is computed as the sum of all runtimes for solved in-
stances + 2 ∗ timeout for unsolved instances; solvers of lower PAR-2 scores are better.

Exploiting Glue Clauses to Design Effective CDCL Branching Heuristics 11

Table 3 shows that all our extended versions achieve a lower PAR-2 score than
the baselines for all the problem sets. Overall, the percentage of PAR-2 score reduc-
tions (computed from the last column of Table 3) with MLDgb, MapleLRBgb and
MLD_CBTgb are 3.73%, 2.98% and 2.12%, respectively, which are considered sig-
nificant with respect to SAT competition. For example, in SAT-2018 the winning solver
has a PAR-2 score which is a reduction of only 0.81% over the runner-up.8

Glucosegb also lowers the PAR-2 score but only by 0.60%. The improvement is
less impressive than with other three GB extensions. In Section 7, we will discuss the
reason and show that this performance gap is not an indication of ineffectiveness of the
GB method.

Finally in this section, as many benchmarks in SAT-2017/SAT-2018 are of industrial
strength, we provide the information about the benchmark families, for which our GB
method is particularly efficient. Table 4 lists those benchmark families for which our
GB extended solvers solve at least 2 more instances than their baselines.

GB Extensions Benchmarks/SAT Comp Solved by Baseline Solved By GB extensions % Improvements

Glucosegb
Integer Prefix/2017 28 32 (+4) 14.32%

Soos/2018 8 11 (+3) 37.5%
Ofer/2018 9 11 (+2) 18.18%

MapleLRBgb

T/2017 28 31 (+3) 9.67%
Integer Prefix/2017 27 30 (+3) 10.00%

Klieber/2017 17 19 (+2) 10.52%
Chen/2018 2 4 (+2) 50.00%
Ofer/2018 5 7 (+2) 28.57%

Scheel/2018 18 20 (+2) 10.00%

MLDgb ak128/2017 11 13 (+2) 15.38%
Heule/2018 16 20 (+4) 20.00 %

MLD_CBTgb Xiao/2018 7 9 (+2) 22.22%
Collatz/2018 7 10 (+3) 30.30%

Table 4. Benchmark families for which the GB extended solvers solve at least two more instances
than their baselines.

6 A New Measure of Solving Efficiency

In [16], the authors show that on average, better branching heuristics have higher GLR
values and lower average LBD (aLBD) scores of the learned clauses. In Table 5, we
compare our extended solvers and their baselines in terms of the average GLR val-
ues and average aLBD scores. All the solvers with GB extension generate conflicts at
about the same rate as their corresponding baselines and achieve slightly smaller aver-
age aLBD scores. These results are largely consistent with [16].

Of course, one can pick up some subset of the benchmarks and show that the stan-
dard metrics that are based on average GLR and average aLBD may not be always
applicable. On the other hand, for some subsets of benchmarks it may be highly ex-
pected that these metrics should be re-enforced. In this section, we select two subsets of
this kind, but surprisingly the standard metrics do not provide a consistent explanation;
they even lead to opposite conclusions. However, we show that a simple new measure,

8 http://sat2018.forsyte.tuwien.ac.at/index.php?cat=rules

12 Md Solimul Chowdhury, Martin Müller, and Jia-Huai You

Systems Glucose Glucosegb MapleLRB MapleLRBgb MLD MLDgb MLD_CBT MLD_CBTgb

avg. GLR 0.49 0.49 0.48 0.48 0.40 0.40 0.40 0.41
avg. aLBD 20.09 19.93 24.88 24.79 27.73 27.36 27.59 27.26

Table 5. Comparison of average GLR and aLBD score for GB extension solvers and baselines
over the 750 test instances.

based on the fraction of learned clauses that are glue clauses, provides a consistent
explanation of solving efficiency.

6.1 Metrics for Solving Efficiency

We define a new performance metric called Glue to Learned (G2L). Then we present
an analysis with three metrics, two standard ones and G2L on two different types of in-
stances, where the baseline heuristics and their GB extensions show opposite strengths.

Glue to Learned (G2L). G2L represents the fraction of learned clauses that are glue
clauses. More precisely, it is defined by #glue_clauses

#learned_clauses , where our solver Ψ has
learned #learned_clauses clauses for a given run on a given formula, among which
#glue_clauses are glue clauses.

Relating G2L to Solving Efficiency The performance of branching heuristics correlates
well with average GLR and the average aLBD scores at large scale. However, these
two metrics fail to explain the performance of the the baseline heuristics and their GB
extensions for two specially designed subsets of instances from SAT-2017 and SAT-
2018:

– GBexclusive : These instances are solved by Ψgb, but not by Ψ.
– Baselineexclusive : These instances are solved by Ψ, but not by Ψgb.

Table 6 compares the four baseline solvers and their GB extensions in terms of av-
erage GLR, average aLBD, and average G2L for GBexclusive and Baselineexclusive
instances. For these two types of instances, it is expected that the solving efficiency will
positively (resp. negatively) correlate with average GLR (resp. average aLBD).

We observe:

– Average GLR: For instances from GBexclusive (Column C) and Baselineexclusive
(Column D), the better branching heuristics have lower average GLR values. This
is surprising since the performance of branching heuristics is negatively correlated
with average GLR values. This is highly inconsistent with the results reported in
[16].

– Average aLBD: In both GBexclusive and Baselineexclusive, the better heuris-
tics have lower average aLBD in Glucose and MapleLRB based systems. This is
consistent with the results from [16]. However, in MLD and MLD_CBT based sys-
tems, the better branching heuristics have higher average aLBD scores, which is
inconsistent with the results of [16].

Exploiting Glue Clauses to Design Effective CDCL Branching Heuristics 13

(A)
Systems

(B)
Employed Heuristics

(C)
GBexclusive

(D)
Baselineexclusive

#inst avg. GLR avg. aLBD avg. G2L #inst avg. GLR avg. aLBD avg. G2L
Glucose {VSIDS}

33
0.56 28.60 0.0005

29
0.59 18.52 0.0015

Glucosegb {VSIDS}gb 0.53 24.69 0.0016 0.62 20.14 0.00078
MapleLRB {LRB}

27
0.50 26.06 0.00073

14
0.47 30.75 0.00046

MapleLRBgb {LRB}gb 0.46 20.38 0.00126 0.48 32.02 0.00037
MLD {Dist/VSIDS/LRB}

28
0.55 23.60 0.00029

15
0.53 26.70 0.0011

MLDgb {Dist/VSIDS/LRB}gb 0.51 26.04 0.00032 0.58 23.21 0.0009
MLD_CBT {Dist,VSIDS,LRB}

26
0.49 26.08 0.0006

24
0.51 29.64 0.00065

MLD_CBTgb {Dist/VSIDS/LRB}gb 0.43 36.24 0.0011 0.55 25.42 0.00037

Table 6. Comparison between baselines and their GB extensions for average GLR, average aLBD
and average G2L for instance sets GBexclusive and Baselineexclusive; Column B shows the
heuristics employed for the systems in column A, where {x}gb in column B is the GB extension
of baseline heuristic x. Column C (resp. Column D) shows three metrics: avg. GLR, avg. aLBD
and avg. G2L for instance category GBexclusive (resp. Baselineexclusive), where the sub-
column #inst shows the number of GBexclusive (resp. Baselineexclusive) instances for which
we are comparing the heuristics in Column B.

– Average G2L: For both GBexclusive and Baselineexclusive, the better heuris-
tics always achieve higher average G2L values. The biggest difference in G2L is
220% (0.0016-0.0005) for VSIDS and VSIDSgb in Glucose and Glucosegb for the
GBexclusive. We observe a significantly larger average G2L values for all the other
cases as well (compare the bold values in avg. G2L subcolumn with the values not
in bold, for both columns C and D in Table 6).

To summarize, for instances for which one heuristic is better than the other, the cor-
relation between the performance of branching heuristics and average GLR and average
aLBD is not always consistent with the results of [16]. The average value of the new
metric G2L positively correlates with the performance of the branching heuristics in
each case.

7 Effect of Glue Level Normalization

Earlier, we noticed that Glucosegb showed less improvement than the other GB exten-
sions. Compared to its baseline, Glucosegb solves 4 additional instances, lowers the
PAR-2 score only by 0.60% (Table 3), and solves instances at a slower rate than its
baseline at most time points (Figure 3).

Unlike the other 3 baseline solvers used in our experiments, the baseline solver
Glucose already bumps variables that are propagated from glue clauses by using VSIDS
[1]. These variables are a subset of what we call glue variables. Thus in Glucosegb,
these variables get bumped from two sources: from GB bumping and from VSIDS.
We hypothesize that the relatively weak performance of Glucosegb comes from this
imbalance.

We tested this hypothesis by changing the glue level normalization method in GB to
decrease the bumping factor in Alg. 2. For a given glue variable v, instead of dividing
gl(v) by |G|, we divide by a bigger factor: gl(v)∑

θ∈G len(θ)
, where len(θ) is the number

14 Md Solimul Chowdhury, Martin Müller, and Jia-Huai You

of variables in the glue clause θ. The sum is the total number of the glue variables
discovered so far in the search. If the average length of the glue clauses in G is n, then
in this version, gl(v) is scaled-down n times more than before.

We repeated our experiment with this version. Over the 750 instances from SAT-
2017 and 2018, Glucosegb now solves 11 more instances than Glucose and and lowers
the PAR-2 score by 2.86%. For the other three GB extensions, this reduction does not
work well.

8 Additional Experimental Results

8.1 Results with Benchmarks from SAT-2016

We performed an additional experiment with all of our GB extended solvers for the
bumping factor gl(v)

|G| for the benchmark instances from SAT-2016 9. In the below, we
summarize the results:

– Both Glucose and its GB extension solve equal number of problems (SAT 64, UN-
SAT 123, total 187).

– MapleLRBgb solves (SAT 69, UNSAT 102, total 171) equal number of instances as
its baseline MapleLRB (SAT 67, UNSAT 104, total 171).

– MLDgb solves 2 more instances (SAT 73, UNSAT 135, total 208) than MLD (SAT
69, UNSAT 137, total 206).

– MLD_CBTgb solves 2 less instances (SAT 66, UNSAT 137, total 203) than its
baseline MLD_CBT (SAT 65, UNSAT 140, total 205).

For this benchmark set, the GB method does not work as well as it works for the bench-
marks from SAT-2017 and 2018. Further tuning of the GB method is expected to im-
prove the performance of the GB extended solvers on this benchmark set.

8.2 Experiment with Non-Delayed Bumping

We performed a smaller scale experiment with MLD over the 350 instances from SAT
competition-2017, where we bump the score of the glue variables as soon as their host-
ing glue clause is learned (i.e., without delaying the bumping). MLD, with this version
of glue variable bumping, solves 2 more UNSAT instances, but 2 less SAT instances
than the baseline. As this non-delayed bumping did not appear to be promising with
MLD, we did not perform any further experiment.

9 Related Work

As remarked earlier, Glucose [1] explicitly increases the activity scores of variables of
the learned clause that were propagated by a glue clause. In their work, the bumping

9 A total of 483 instances (283 applications, 200 crafted) after removing 17 duplicate instances
between SAT-2016 and SAT-2017.

Exploiting Glue Clauses to Design Effective CDCL Branching Heuristics 15

was based on VSIDS score bumping scheme. In contrast, we increase the activity scores
of all variables that appear in glue clauses based on their normalized glue level.

In [12], the authors studied the behavior of Glucose with respect to eigencentrality,
a precomputed static measure of ranking of the variables in industrial SAT instances.
They show that the branched and propagated variables in Glucose have high eigencen-
trality and compared to the variables that appear in conflict clauses, the variables that
appear in learned clauses are more eigencentral. In contrast, we dynamically character-
ize glue and nonglue variables within the course of a search and show that decisions
with glue variables are more conflict efficient than decisions with nonglue variables.

The authors of [15] show that the VSIDS heuristic branches disproportionately more
often on variables that are bridges between communities. Here, we have shown that
CDCL heuristics branch disproportionately more often on glue variables with respect
to their relatively smaller pool size.

In [9], the authors exploit the betweeness centrality measure of variables in indus-
trial SAT formulas to design new heuristics. This measure is precomputed for a given
instance. In contrast, we compute the normalized glue level of the variables dynamically
during the search.

10 Summary and Future Work

In this work, we showed experimentally that decisions with variables appearing in glue
clauses are more conflict efficient than decisions with other variables, and state-of-the-
art CDCL SAT solvers tend to make glue decisions more often. Motivated by these
observations, we developed a structure-aware CDCL variable bumping scheme, which
increases the heuristic score of a glue variable based on the frequency of its appearance
in glue clauses. Our empirical evaluation showed the effectiveness of the new method
on the main track instances from SAT-2017 and SAT-2018 with four state-of-the-art
CDCL SAT solvers. Lastly, we found that for some subsets of SAT-2017 and SAT-2018
benchmarks, our experimental data are surprisingly inconsistent with the standard per-
formance metrics based on GLR and average LBD. We showed that for these subsets of
benchmarks, the measure based on the fraction of learned clauses that are glue clauses
provides a consistent explanation of our experimental data.

A number of questions deserve further considerations. The first is on the relation-
ships between normalized glue level and other centrality measures, such as eigencen-
trality or betweenness centrality. The notion of glue level is central in our glue bumping
scheme. Can we design clause deletion heuristics based on the notion of glue level? A
similar question can be asked for the G2L metric: can we design more efficient branch-
ing heuristics based on this measure of solving efficiency?

Acknowledgements

We thank the anonymous reviewers for their valuable advice. This research is supported
by Natural Sciences and Engineering Research Council of Canada (NSERC) PGS Doc-
toral award, President’s Doctoral Prize of Distinction (PDPD), Alberta Innovates Grad-
uate Student Scholarship (AIGSS), and NSERC discovery grant.

16 Md Solimul Chowdhury, Martin Müller, and Jia-Huai You

References

1. Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT
solvers. In Proceedings of IJCAI 2009, pages 399–404, 2009.

2. Gilles Audemard and Laurent Simon. Refining restarts strategies for SAT and UNSAT. In
Proceedings of CP 2012, pages 118–126, 2012.

3. Armin Biere, Marijn Heule, Hans V. Maaren, and Toby Walsh. Handbook of Satisfiability:
Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, The
Netherlands, 2009.

4. Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler.
EXE: automatically generating inputs of death. In Proceedings of CCS 2006, pages 322–
335, 2006.

5. Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing 1971, pages 151–158, 1971.

6. Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause
elimination. In Proceedings of SAT 2005, pages 61–75, 2005.

7. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Proceedings of SAT 2003.
Selected Revised Papers, pages 502–518, 2003.

8. Aarti Gupta, Malay K. Ganai, and Chao Wang. SAT-based verification methods and appli-
cations in hardware verification. In Proceedings of SFM 2006, pages 108–143, 2006.

9. Sima Jamali and David Mitchell. Centrality-based improvements to CDCL heuristics. In
Proceedings of SAT 2018, pages 122–131, 2018.

10. Matti Järvisalo, Armin Biere, and Marijn Heule. Blocked clause elimination. In Proceedings
of TACAS 2010, pages 129–144, 2010.

11. Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules. In Proceedings of
IJCAR 2012, pages 355–370, 2012.

12. George Katsirelos and Laurent Simon. Eigenvector centrality in industrial SAT instances. In
Proceedings of CP 2012, pages 348–356, 2012.

13. Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Exponential recency
weighted average branching heuristic for SAT solvers. In Proceedings of AAAI 2016, pages
3434–3440, 2016.

14. Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate based
branching heuristic for SAT solvers. In Proceedings of SAT 2016, pages 123–140, 2016.

15. Jia Hui Liang, Vijay Ganesh, Ed Zulkoski, Atulan Zaman, and Krzysztof Czarnecki. Un-
derstanding VSIDS branching heuristics in conflict-driven clause-learning SAT solvers. In
Proceedings of Haifa Verification Conference, HVC 2015, pages 225–241, 2015.

16. Jia Hui Liang, Hari Govind V.K., Pascal Poupart, Krzysztof Czarnecki, and Vijay Ganesh.
An empirical study of branching heuristics through the lens of global learning rate. In Pro-
ceedings of SAT 2017, pages 119–135, 2017.

17. Mao Luo, Chu-Min Li, Fan Xiao, Felip Manyà, and Zhipeng Lü. An effective learnt clause
minimization approach for CDCL SAT solvers. In Proceedings of IJCAI 2017, pages 703–
711, 2017.

18. Fabio Massacci and Laura Marraro. Logical cryptanalysis as a SAT problem. J. Autom.
Reasoning, 24(1/2):165–203, 2000.

19. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of Design Automation Confer-
ence, DAC 2001, pages 530–535, 2001.

20. Chanseok Oh. Between SAT and UNSAT: the fundamental difference in CDCL SAT. In
Proceedings of SAT 2015, pages 307–323, 2015.

Exploiting Glue Clauses to Design Effective CDCL Branching Heuristics 17

21. Jussi Rintanen. Engineering efficient planners with SAT. In Proceedings of ECAI 2012,
pages 684–689, 2012.

22. João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999.

23. Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryptographic
problems. In Proceedings of SAT 2009, pages 244–257, 2009.

24. Fan Xiao, Mao Luo, Chu-Min Li, Felip Manya‘, and Zhipeng Lu. MapleLRB_LCM,
Maple_LCM, Maple_LCM_Dist, MapleLRB_LCMoccRestart and Glucose3.0+width in sat
competition 2017. In Proceedings of SAT Competition 2017, pages 22–23, 2017.

