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Summary 
Recent biological researches have corroborated that gene 
sequence variants has a rule for the development and 
progression of common diseases. Some technological 
constraints restricts us from collecting haplotype data 
directly, instead we collect genotype data. To infer 
haplotype data from genotype data, Haplotype Inference 
By Pure Parsimony which minimizes the number of 
distinct haplotypes to explain certain number of 
genotype, is a good option. HIPP can be reduced to 
equivalent boolean satisfiablity problem. The performance 
of this approach depends the choice of branching rules and 
preprocessing steps dramatically. In this paper, we 
experiment on different  combination of preprocessing 
choices and branching rules of SAT solver. This paper 
proposes a solution to the HIPP problem, based on this 
SAT model implemented on a distributed environment. 
Keeping the complexity of the search problem in mind, 
we developed SAT solver on distributed 
environment. And at the upshot of our work, we 
tested some problem instances under the combination of 
six branching rules and three pre-processing to give the 
decision which variant of the SAT model is best for 
HIPP. 
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1. Introduction 
 
   In the last few years, a comprehensive search for 
genetic influences on disease involves examining all 
genetic differences in a large number of affected 
individuals. This allows to systematically test common 
genetic variants for their role in diseases. The next high 
priority phase of human genomics will involve the 
development of a full Haplotype Map of the human 
genome. The hapmap project [2] was initiated to 

develop a public resource that will help the researchers 
to find genes associated with human disease. This is the 
direct result of mankind’s avaricious step to thrive for 
finding the influence of genetic variation in diseases. 
The achievement of this project’s goal stipulates the 
efficient inference of haplotypes from genotypes.  
  As Haplotype inference has become the cynosure, 
ventures were undertaken for finding methods for 
efficient haplotype inference. There are two major 
approaches for solving the haplotype inference problem, 
which are conversant till date: combinatorial methods 
and statistical methods. Combinatorial methods often 
follow an optimization criterion [3], whereas statistical 
methods usually follow a model of haplotype evolution 
[4]. 
  A well-known combinatorial approach to the 
haplotype inference problem is called Haplotype 
Inference by Pure Parsimony (HIPP). The goal is to 
find a solution to the haplotype inference problem that 
minimizes the total number of distinct haplotypes used. 
Current approaches for solving the HIPP problem 
utilize Integer Linear Programming (ILP) [8] and 
branch and bound algorithms [9].  
  This very paper has its contribution in four folds. 
Firstly, we introduce a plain SAT model for encoding 
the haplotype inference by pure parsimony problem. 
Secondly, we develop a parallel algorithm for the SAT 
solver for implementing the algorithm in a distributed 
environment for inferring the haplotypes. Thirdly, we 
introduce search pruning techniques for making the 
initial model practical for solving existing problem 
instances in the distributed environment. Lastly, we 
provide experimental results which guides us about the 
best combination of the search pruning methods.  
  We have arranged our paper as follows.  The first 
section pertains to mathematical definition of HIPP, the 
second section describes SAT based Haplotype 
Inference and how  we encode the HIPP problem 
instance to SAT problem instance by using plain SAT 
model by a polynomial time algorithm. Then the 
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experimental result section is followed by a compact 
discussion on  DPLL algorithm and distributed SAT 
solver. 
 
2. Haplotype Inference 
 
  “Given a set G of n genotypes, each of length m, the 
haplotype inference problem consists in finding a set H 
of 2*n haplotypes (not necessarily distinct), such that 
for each genotype gi in G there is at least one pair of 
haplotypes (hj,hk), with hj and hk in H such that the pair 
(hj,hk) explains gi .” 
  The variable n denotes the number of individuals in 
the sample(1<=i<=n). m denotes the number of SNP 
sites(1<=j<=m).. gi  denotes a specific genotype, : gij  
denotes a specific site j in genotype gi . 
  When a nucleotide is altered in a DNA sequence, 
DNA sequence variation occurs, this DNA sequence 
variation is called SNP or Single Nucleotide 
Polymorphism. A SNP site is usually biallelic. That 
means an SNP site can have only two possible values 
[5]. In our haplotype inference problem, without loss of 
generality we assume some semantics. The values of 
the two possible alleles of each SNP are always 0 or 
1.Value 0 represents the wild type and value 1 
represents the mutant. A haplotypeis is a string over the 
alphabet {0,1}. Genotypes may be represented by 
extending the alphabet used for representing haplotypes 
to {0,1,2}.With homozygous sites being represented by 
values 0 or 1, depending on whether both  haplotypes 
have value 0 or 1 at that site. Heterozygous sites being 
represented by value 2. 

 
3. Mathematical Formulation of HIPP 

 
  Our approach to haplotype inference,  Haplotype 
inference by parsimony (HIPP) has got an important 
feature.  A solution to this problem minimizes the total 
number r = |H| of distinct haplotypes used.Though 
genotypes exhibit a great diversity, experimental results 
provide support for this approach the number of 
haplotypes in a large population is typically very small 
[1] .  
  Let us consider three genotypes: 2100, 2102, 1221. 
From the definition of haplotype inference stated in the 
previous section  six distinct haplotypes are expected to 
explain these genotypesh i.e we are expecting to get six 
haplotypes which have a congruence with the collected 
genotypes. But some times we need less than two order 
of magnitude of genotypes of haplotypes to explain the 
given genotypes. 

  Six haplotypes are used here. They are 0100, 1100, 
0100, 1101, 1011, 1101.But only four haplotypes are 
unique. 0100, 1100, 1101, 1011. This observation 
depicts the strength of haplotype inference by pure 
parsimony (HIPP). 

 
4. Encoding of HIPP Problem Instance to 

SAT Problem Instance 
 

We use the same encoding of HIPP problem to SAT 
instacne  as in [1]. In Table 1 we are showing the 
technique by   one simple example created by arbitrary 
data. Let us take three genotypes, a HIPP problem 
instance namely A. The genotype data on that problem 
instance are 101, 201 and 100. Let’s take r=3 to explain 
this genotype data. 
  After we convert this HIPP problem instance A into 
SAT problem instance B by our model showed in Table 
1, it will render a set of CNFs, in this dissertation we 
have followed the input format from DIMACS [6]. 
  For this conversion in Table 1 we took r=3, m=3, n=3 
and required 9 h variables, 18 s variables,  2 g variables 
and 18 v variables total of 47 variables [1]. The list of 
variables are as follows: 
h1

11  h2
13  h3

13  h4
21  h5

22   h6
23  h7

31  h8
32  h9

33  sa10
11  sa11

12  
sa12

13  sa13
21  sa14

22  sa15
23  sa16

31  sa17
32  sa18

33  sb19
11  sb20

12  
sb21

13  sb22
21  sb23

22  sb24
23  sb25

31  sb26
32  sb27

33 ga28
21  gb29

21 
va30

11  va31
12  va32

13  va33
21  va34

22  va35
23  va36

31 va37
32  va38

33  
vb39

11  vb40
12  vb41

13  vb42
21  vb43

22  vb44
23  vb45

31  vb46
32  vb47

33   
  The subscript numbers indicating the index of the 
variable and the superscript numbers indicating variable 
number used in the above table of CNFs. 
  After execution of the SAT solver we have got the 
following truth assignment of the variable for the 
formula to be satisfied:  
1= 1, 2= 0, 3= 1, 4= 1, 5= 0, 6= 0, 7= 0, 8= 0, 9= 1, 10= 
1, 11= 1, 12= 0, 13= 0, 14= 0, 15= 1, 16= 0, 17= 0, 18= 
0, 19= 1, 20= 0, 21= 0, 22= 0, 23= 0, 24= 1, 25= 0, 26= 
1, 27= 0, 28= 1, 29= 0, 30= 1, 31= 1, 32= 0, 33= 1, 34= 
1, 35= 0, 36= 1, 37= 1, 38= 1, 39= 1, 40= 0, 41= 0, 42= 
1, 43= 0, 44= 0, 45= 1, 46= 0, 47= 1 
  Here variable numbers corresponds to the number on 
the list of variables in above list. From this truth 
values we can see the values of the three haplotypes are 
101, 100, 001 and these haplotypes are capable to 
explain the genotypes in our HIPP problem instance. 
   Some congruence between these truth values and our 
encoding model [1] will be very relevant to present. 
Only one value of s variable in a set pertaining to one 
genotype is set to 1 in the truth assignment. That was 
our model's trick to select two 
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Table 1: Conversion of HIPP Problem Instance into SAT Problem Instance 
 

HIPP Problem Instance 

(A) 

SAT Problem Instance (B) 

 

 

 

 

 

 

 

 

 

 

 

 

1) 101  

2) 201  

3) 100 

p cnf 47 140 

1 -10 0 

1 -19 0 

4 -13 0 

4 -22 0 

7 -16 0 

7 -25 0 

-2 -10 0 

-2 -19 0 

-5 -13 0 

-5 -22 0 

-8 -16 0 

-8 -25 0 

3 -10 0 

3 -19 0 

6 -13 0 

6 -22 0 

9 -16 0 

9 -25 0 

30 -10 0 

-30 10 0 

-33 -13 0 

-36 -16 0 

33 10 -30 0 

33 -10 30 0 

-33 10 30 0 

33 -10 -30 0 

36 13 -33 0 

36 -13 33 0 

 

-36 13 33 0 

36 -13 -33 0 

36 16 0 

39 -19 0 

-39 19 0 

-42 -22 0 

-45 -25 0 

42 19 -39 0 

42 -19 39 0 

-42 19 39 0 

42 -19 -39 0 

45 22 -42 0 

45 -22 42 0 

-45 22 42 0 

45 -22 -42 0 

45 25 0 

1 -28 -11 0 

-1 28 -11 0 

1 -29 -20 0 

-1 29 -20 0 

4 -28 -14 0 

-4 28 -14 0 

4 -29 -23 0 

-4 29 -23 0 

7 -28 -17 0 

-7 28 -17 0 

7 -29 -26 0 

-7 29 -26 0 

 

28 29 0 

-28 -29 0 

-2 -11 0 

-2 -20 0 

-5 -14 0 

-5 -23 0 

-8 -17 0 

-8 -26 0 

3 -11 0 

3 -20 0 

6 -14 0 

6 -23 0 

9 -17 0 

9 -26 0 

31 -11 0 

-31 11 0 

-34 -14 0 

-37 -17 0 

34 11 -31 0 

34 -11 31 0 

-34 11 31 0 

34 -11 -31 0 

37 14 -34 0 

37 -14 34 0 

-37 14 34 0 

37 -14 -34 0 

37 17 0 

40 -20 0 

 

-40 20 0 

-43 -23 0 

-46 -26 0 

43 20 -40 0 

43 -20 40 0 

-43 20 40 0 

43 -20 -40 0 

46 23 -43 0 

46 -23 43 0 

-46 23 43 0 

46 -23 -43 0 

46 26 0 

1 -12 0 

1 -21 0 

4 -15 0 

4 -24 0 

7 -18 0 

7 -27 0 

-2 -12 0 

-2 -21 0 

-5 -15 0 

-5 -24 0 

-8 -18 0 

-8 -27 0 

-3 -12 0 

-3 -21 0 

-6 -15 0 

-6 -24 0 

 

-9 -18 0 

-9 -27 0 

32 -12 0 

-32 12 0 

-35 -15 0 

-38 -18 0 

35 12 -32 0 

35 -12 32 0 

-35 12 32 0 

35 -12 -32 0 

38 15 -35 0 

38 -15 35 0 

-38 15 35 0 

38 -15 -35 0 

38 18 0 

41 -21 0 

-41 21 0 

-44 -24 0 

-47 -27 0 

44 21 -41 0 

44 -21 41 0 

-44 21 41 0 

44 -21 -41 0 

47 24 -44 0 

47 -24 44 0 

-47 24 44 0 

47 -24 -44 0 

47 27 0 

 
 
 
 
haplotypes by using two sets of s variable in our HIPP 
problem instance [1]. The encoding model 
proposed that, s variables of set A, will form three 
groups;  variable number 10, 13, 16, variable number 
11,14,17 and  variable number 12, 15,18 pertaining to 
genotype number 1,2 and 3 respectively will form a 
group under the stipulation that each group will have 

exactly one variable set to 1. If we observe the values 
for these three groups of variable in the truth 
assignment then we will find the congruence with the 
stipulation. This is true for the other set of s values. 
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  One more obvious congruence is that, the haplotype 
we will select depends on which s variable is set to 1. 
The s variable which is set to 1,the haplotype pertaining 
to that variable will be used to explain the genotype 
pertained to the s variable [1]. This is the case for both 
set of values of s. For explaining the first genotype that 
is for 101, we would need only one haplotype as it does 
not contain any heterozygous site. In our arbitrary 
example, from set A of s variable, variable number 10, 
13,16 and from set B of s variable, variable number 19,  
22, 25 pertaining to genotype number 1 have 
congruence in their values. Variable number 10 and 19 
which are the first variable in both set, is set to 1. As 
the first variable is set to one in both set of s variable, 
the first haplotype obtained from the truth assignment is 
selected to explain the first genotype. 
But, For genotype number 2 that is for 201, which 
include heterozygous site, the values of s variables for 
both sets are not identical. So for explaining these 
genotype we need different haplotypes. Variable  
number 11, 14, 17 from set A of s variables and 
variable number 20,23,26 from set B of s variables, 
both pertaining to genotype number 2, have different 
value. From this two sets only variable number 11 and 
variable number 26 are set to 1 respectively in the truth 
assignment. Variable number 11 is the first variable on 
set A of s and 26 is the third variable on the set B of s. 
So first and third haplotype obtained in the truth 
statement is selected to explain the second genotype. 
 
5. SAT Solver 
 
5.1  The Algorithm 
 
  There are two classes of high-performance algorithms 
for solving instances of SAT in practice: modern 
variants of the DPLL algorithm, such as Chaff or 
GRASP, and stochastic local search algorithms, such as 
WalkSAT. Here, we are using the general DPLL 
algorithm that is derived by Davis, Putnam, Logemann 
and Loveland. With this algorithm, we will use three 
preprocessing models and six branching rules 
separately to find out which combination is best for the 
SAT problem that is derived from a HIPP problem. 
  The DPLL/Davis-Putnam-Logemann-Loveland 
algorithm is a complete, backtracking-based algorithm 
for deciding the satisfiability of propositional logic 
formulae in conjunctive normal form, i.e. for solving 
the CNF-SAT problem. 
  The DPLL algorithm enhances over the backtracking 
algorithm by the eager use of the following rules at 
each step:  

1) Unit Clause Propagation: Clauses of length 
one are called unit clauses. Trivially, if a 
function F includes a unit clause {u}, then 

every truth assignment ƒ that satisfies F must 
have ƒ (u) =1. 

2) Monotone Literal Fixing: If a propositional 
variable occurs with only one polarity in the 
formula, it is called monotone. Monotone 
literals can always be assigned in a way that 
makes all clauses containing them true. Thus, 
these clauses do not constrain the search 
anymore and can be deleted.  

3) Subsumption Rule: In the satisfiability 
problem, if there is such a clause that has a 
subset clause inside the program then that 
clause has to be deleted. This rule is known as 
subsumption rule. 

 
5.2 Best Variant of DPLL  Algorithm for HIPP 
Problem 
 
  Each recursive call of DPLL may invoke a choice of a 
literal u; algorithms for making these choices are 
referred to as branching rules. Several of the branching 
rules commonly used in DPLL. Among them, we used 
the following rules. 

1) Jeroslow-Wang (1 sided) Rule  
2) Jeroslow-Wang (2 sided) Rule  
3) Minlen Rule  
4) DSJ Rule  
5) C-SAT Rule  
6) Maximum Occurrence Rule 

 
All branching rules except Maximum Occurrence Rule 
are well known [11]. As a branching rule, Maximum 
Occurrence Rule can be defined as follows ”branch on 
the variable which has the most occurrence in the 
working formula”. Choosing the variable which has 
maximum occurrences might be a good rule. We 
applied this rule to justify this statement. 
  The DPLL algorithm has three possible ingredients: 

1) Unit Clause Propagation 
2) Monotone Literal Fixing 
3) The Subsumption Rule 

  The three ingredients listed here yield 23 different 
versions of what might be called the Davis-Putnam 
kernel (DP_Kernel) [11]. One of these eight versions, 
using none of these three ingredients, reduces DPLL to 
implicit enumeration. Each additional ingredient that is 
incorporated into the Davis-Putnam kernel may reduce 
the size of the DPLL tree, but it adds to the time spent 
at each node of the tree. Without experimental results, it 
seems hard to predict which of the combinations is 
likely to be most efficient. 
  Comparing algorithms by experiments requires a 
measurement of algorithmic performance. The running 
time is an obvious choice. However, it is not a good 
choice on the criterion of reproducibility, because it is 
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affected by the data structure, the programming 
language, the compiler, and the machine used; even the 
programmers may introduce biases through the coding 
process. 
  A measurement of algorithmic performances that is 
independent of these factors is the size of the DPLL 
tree. For an unsatisfiable formula, it is one plus twice 
the number of the times that the DPLL construct the 
branching rule. So, it seems perfect to use the size of 
DPLL tree for measuring algorithmic performance. 
 
6. Distributed SAT Solver 
 
  In the previous section, at the time of finding the 
measurement of the algorithmic performance, we omit 
the run time of the program because of its instability of 
giving same result for different platform. But runtime 
can not be omitted totally for solving HIPP problem 
instance. Because, when HIPP problem instance is 
converted into the SAT problem instance the problem 
size increases by large magnitude, for the use of some 
extra variables like ‘g’ variables, ‘s’ variables in the 
encoding algorithm which itself dilate the problem 
instance. The justification of the involvement of grid 
environment has its existence on the gigantic 
complexity of HIPP problem instance after converted to 
SAT problem instance. The parallel algorithm for SAT 
solver is supposed to be more convenient for HIPP 
because it can handle the increased complexity in a 
formidable way comparing to the to the traditional 
serial SAT solver. As we know, each branch of the 
DPLL tree is mutually exclusive from others for 
computing, so if we compute the branches in parallel 
and after computing if we can merge the result, then it 
will reduce the run time of the total execution. This 
idea thrived us to develop a parallel algorithm for the 
SAT solver and we found our idea useful. 
 
  For constructing the distributed version of the SAT 
Solver, we use the Alchemi [7] software and C# coding 
language. Alchemi, a .NET-based grid computing 
framework provides the runtime machinery and 
programming environment required to construct 
desktop grids and develop grid applications. It allows 
flexible application composition by supporting an 
object-oriented grid application programming model in 
addition to a grid job model. 
  There are four types of distributed components 
(nodes) involved in the construction of Alchemi grids 

and execution of grid applications: Manager, Executor, 
User & Cross-Platform Manager. The run time of the 
execution is proportion to the inverse of the number of 
the executer. That is, if we increase the number of the 
executer, than the run time will be decreased. 
  
7.  Experiment Result 

 7.1 Obtaining Real Genotype Data for SAT  
Solver 
   
We obtained our real genotype data for our SAT solver 
from the hapmap project [10]. Genotype data that we 
had obtained from this source was in the form of base 
pair in a loci. Data from two populations (Han Chinese 
in Beijing, China  and Japanese in Tokyo, Japan) are 
selected for our project. The encoder of HIPP problem 
instance, described on section 5, will not take this 
biological data as input, rather it will take a problem 
instance with alphabet {0,1,2}. So, we have converted 
the real genotype data into a data that is convenient for 
our encoder. p1.txt and p2.txt  shown in Table 2  are the 
converted files. 

 

 

Table 2: Files Convenient for The Encoder 
 

Original Name of the File Converted 

File Name 

genotypes_ENm014.7q31.33_nonrs_CHB.txt p1.txt 

 genotypes_ENm014.7q31.33_nonrs_JPT.txt      p2.txt 

 

7.2 Experiment results 
   
The following table, Table 3 shows the experiment 
result obtained by executing distributed sat solver on 
the above mentioned  problem instances under the 
combination of six branching rules and three pre-
processing. 
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Table 3: Performance Measurement of Distributed SAT Solver 
 

Number of Recursive Calls  

Problem Result Level 
Preprocessing 

Combinaton 

|ropt 

- 

rused|
BR 01 BR 02 BR 03 BR 04 BR 05 BR 06 

p1r6n12 SAT 130 COMB 01 

| 6 - 

6 | 

= 0

371871 258751 DNF 97998 1110049 3971955 

p1r6n12 SAT 130 COMB 02 

| 6 - 

6 | 

= 0

4788603 371507 DNF 125261 1160264 6587852 

p1r7n12 SAT 130 COMB 01 

| 6 - 

7 | 

= 1

661365 349559 212981601 443183 402317 35625254

p1r8n12 SAT 130 COMB 01 

| 6 - 

8 | 

= 2

1800481 1053514 180699667 1822693 3135 798389848

p2r4n12 UNSAT 130 COMB 01 

| 5 - 

4 | 

= 1

205735 191801 1620977734 16327 21071 99841 

p2r5n12 SAT 130 COMB 01 

| 5 - 

5 | 

= 0

1135223 1074644 DNF 19386 109489 721379 

p2r5n12 SAT 130 COMB 02 

| 5 - 

5 | 

= 0

2886391 1108612 DNF 19247 119626 770141 

p2r6n12 SAT 130 COMB 01 

| 5 - 

6 | 

= 1

197007 71615 4778 200094 1977 DNF 

 

 

Elaboration of terms used in  Table 3:  
 

1) pArBnC = Problem instance named ‘pA’ in 
which ‘B’ number of haplotype is used to 
explain the genotypes and ‘C’ number of 
genotypes is used. 

2) ropt = Optimal ‘r’ for a specific problem 
3) rud = Used ‘r’ in that specific problem 
4) DNF = Did Not Finished 
5) COMB 01 = Unit Clause Propagation + 

Monotone Literal Fixing 
 

 
 

 
 
 
 
6) COMB 02= Unit Clause Propagation + 

Monotone Literal Fixing + Subsumption Rule 
7) BR 01 = 1 sided Jeroslow-Wang Rule 
8) BR 02 = 2 sided Jeroslow-Wang Rule 
9) BR 03 = Minlen Rule 
10) BR 04 = DSJ Rule 
11) BR 05 = C-SAT Rule 
12) BR 06 = Maximum Occurrence Rule 
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7.3 Analysis of experiment 
   
From the Table 3, we have come to some decisions. 
Those are as follows:  

1) Unit clause propagation must has to be used 
for solving HIPP problem. From our some 
experimental test, we saw that if we do not use 
unit clause propagation, the result becomes 
DNF. 

2) Monotone literal minimize the number of 
SETVAR a great deal but it need Unit clause 
propagation as a helping hand.  

3) Subsumption rule gives a better result where 
used r is optimal. If you have a look on 
problem p2r5n12, you can see that the 
combination that uses subsumption rule gives 
better result than the other  one. But this is 
hypothetical. 

4) We know that near the optimal r the 
complexity of the problem is much. And in this 
condition the branching rule that can create 
minimum SETVAR to solve the problem will 
be the best branching rule for our problem. 
Considering this condition, we find that “DSJ 
Rule” is the best branching rule for solving 
HIPP problem. You will find that in our 
experiment table among the 8 problems, DSJ 
rule produce least number of SETVAR for 5 
problems to solve those problems. 

 
8. Conclusion and Future Work 
 
 After we have taken some promising preprocessing 
steps such as unit, monotone and subsumption and 
some well known branching rules, operating on input 
which is taken from real haplotype data, the 
experimental result shows the importance of 
preprocessing steps and also of efficiency of the 
brunching rule DSJ when HIPP by SAT solver is 
entailed. 
  With this conclusive finding we can propound some 
future work direction in this area. Our SAT solver is 
chronological backtracking. A non-chronological 
backtracking based SAT solver can be customized 
with our proposed pre-processing steps. At any stage of 
that solver, the sub problems can be assigned 
priority according to value returned by our proposed 
branching rule DSJ. Our experiments shows that C-
SAT and 2-sided jeroslow wang are promising. A more 
rigorous performance measurement can be done among 
DSJ, C-SAT and 2-sided jeroslow wang rule with some 
more experiments. 
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