
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

247

Manuscript received August 5, 2008.
Manuscript revised August 20, 2008.

Haplotype Inference by Pure Parsimony by SAT

Solver in Distributed Environment

Md SOLIMUL B. CHOWDHURY|, Md SAKIBUL H.||, SARDAR A. HAQUE|||

| Faculty of Computer Science and Engineering Department, Sylhet International University, Bangladesh.
|| Software Engineer, Therap BD, Bangladesh.

||| Faculty of Computer Science and Information Technology Department, Islamic University of Technology, Bangladesh.

Summary
Recent biological researches have corroborated that gene
sequence variants has a rule for the development and
progression of common diseases. Some technological
constraints restricts us from collecting haplotype data
directly, instead we collect genotype data. To infer
haplotype data from genotype data, Haplotype Inference
By Pure Parsimony which minimizes the number of
distinct haplotypes to explain certain number of
genotype, is a good option. HIPP can be reduced to
equivalent boolean satisfiablity problem. The performance
of this approach depends the choice of branching rules and
preprocessing steps dramatically. In this paper, we
experiment on different combination of preprocessing
choices and branching rules of SAT solver. This paper
proposes a solution to the HIPP problem, based on this
SAT model implemented on a distributed environment.
Keeping the complexity of the search problem in mind,
we developed SAT solver on distributed
environment. And at the upshot of our work, we
tested some problem instances under the combination of
six branching rules and three pre-processing to give the
decision which variant of the SAT model is best for
HIPP.

Keywords
haplotype inference by pure parsimony, HIPP, SAT
solver, distributed environment.

1. Introduction

 In the last few years, a comprehensive search for
genetic influences on disease involves examining all
genetic differences in a large number of affected
individuals. This allows to systematically test common
genetic variants for their role in diseases. The next high
priority phase of human genomics will involve the
development of a full Haplotype Map of the human
genome. The hapmap project [2] was initiated to

develop a public resource that will help the researchers
to find genes associated with human disease. This is the
direct result of mankind’s avaricious step to thrive for
finding the influence of genetic variation in diseases.
The achievement of this project’s goal stipulates the
efficient inference of haplotypes from genotypes.
 As Haplotype inference has become the cynosure,
ventures were undertaken for finding methods for
efficient haplotype inference. There are two major
approaches for solving the haplotype inference problem,
which are conversant till date: combinatorial methods
and statistical methods. Combinatorial methods often
follow an optimization criterion [3], whereas statistical
methods usually follow a model of haplotype evolution
[4].
 A well-known combinatorial approach to the
haplotype inference problem is called Haplotype
Inference by Pure Parsimony (HIPP). The goal is to
find a solution to the haplotype inference problem that
minimizes the total number of distinct haplotypes used.
Current approaches for solving the HIPP problem
utilize Integer Linear Programming (ILP) [8] and
branch and bound algorithms [9].
 This very paper has its contribution in four folds.
Firstly, we introduce a plain SAT model for encoding
the haplotype inference by pure parsimony problem.
Secondly, we develop a parallel algorithm for the SAT
solver for implementing the algorithm in a distributed
environment for inferring the haplotypes. Thirdly, we
introduce search pruning techniques for making the
initial model practical for solving existing problem
instances in the distributed environment. Lastly, we
provide experimental results which guides us about the
best combination of the search pruning methods.
 We have arranged our paper as follows. The first
section pertains to mathematical definition of HIPP, the
second section describes SAT based Haplotype
Inference and how we encode the HIPP problem
instance to SAT problem instance by using plain SAT
model by a polynomial time algorithm. Then the

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

248

experimental result section is followed by a compact
discussion on DPLL algorithm and distributed SAT
solver.

2. Haplotype Inference

 “Given a set G of n genotypes, each of length m, the
haplotype inference problem consists in finding a set H
of 2*n haplotypes (not necessarily distinct), such that
for each genotype gi in G there is at least one pair of
haplotypes (hj,hk), with hj and hk in H such that the pair
(hj,hk) explains gi .”
 The variable n denotes the number of individuals in
the sample(1<=i<=n). m denotes the number of SNP
sites(1<=j<=m).. gi denotes a specific genotype, : gij
denotes a specific site j in genotype gi .
 When a nucleotide is altered in a DNA sequence,
DNA sequence variation occurs, this DNA sequence
variation is called SNP or Single Nucleotide
Polymorphism. A SNP site is usually biallelic. That
means an SNP site can have only two possible values
[5]. In our haplotype inference problem, without loss of
generality we assume some semantics. The values of
the two possible alleles of each SNP are always 0 or
1.Value 0 represents the wild type and value 1
represents the mutant. A haplotypeis is a string over the
alphabet {0,1}. Genotypes may be represented by
extending the alphabet used for representing haplotypes
to {0,1,2}.With homozygous sites being represented by
values 0 or 1, depending on whether both haplotypes
have value 0 or 1 at that site. Heterozygous sites being
represented by value 2.

3. Mathematical Formulation of HIPP

 Our approach to haplotype inference, Haplotype
inference by parsimony (HIPP) has got an important
feature. A solution to this problem minimizes the total
number r = |H| of distinct haplotypes used.Though
genotypes exhibit a great diversity, experimental results
provide support for this approach the number of
haplotypes in a large population is typically very small
[1] .
 Let us consider three genotypes: 2100, 2102, 1221.
From the definition of haplotype inference stated in the
previous section six distinct haplotypes are expected to
explain these genotypesh i.e we are expecting to get six
haplotypes which have a congruence with the collected
genotypes. But some times we need less than two order
of magnitude of genotypes of haplotypes to explain the
given genotypes.

 Six haplotypes are used here. They are 0100, 1100,
0100, 1101, 1011, 1101.But only four haplotypes are
unique. 0100, 1100, 1101, 1011. This observation
depicts the strength of haplotype inference by pure
parsimony (HIPP).

4. Encoding of HIPP Problem Instance to

SAT Problem Instance

We use the same encoding of HIPP problem to SAT
instacne as in [1]. In Table 1 we are showing the
technique by one simple example created by arbitrary
data. Let us take three genotypes, a HIPP problem
instance namely A. The genotype data on that problem
instance are 101, 201 and 100. Let’s take r=3 to explain
this genotype data.
 After we convert this HIPP problem instance A into
SAT problem instance B by our model showed in Table
1, it will render a set of CNFs, in this dissertation we
have followed the input format from DIMACS [6].
 For this conversion in Table 1 we took r=3, m=3, n=3
and required 9 h variables, 18 s variables, 2 g variables
and 18 v variables total of 47 variables [1]. The list of
variables are as follows:
h1

11 h2
13 h3

13 h4
21 h5

22 h6
23 h7

31 h8
32 h9

33 sa10
11 sa11

12
sa12

13 sa13
21 sa14

22 sa15
23 sa16

31 sa17
32 sa18

33 sb19
11 sb20

12
sb21

13 sb22
21 sb23

22 sb24
23 sb25

31 sb26
32 sb27

33 ga28
21 gb29

21
va30

11 va31
12 va32

13 va33
21 va34

22 va35
23 va36

31 va37
32 va38

33
vb39

11 vb40
12 vb41

13 vb42
21 vb43

22 vb44
23 vb45

31 vb46
32 vb47

33
 The subscript numbers indicating the index of the
variable and the superscript numbers indicating variable
number used in the above table of CNFs.
 After execution of the SAT solver we have got the
following truth assignment of the variable for the
formula to be satisfied:
1= 1, 2= 0, 3= 1, 4= 1, 5= 0, 6= 0, 7= 0, 8= 0, 9= 1, 10=
1, 11= 1, 12= 0, 13= 0, 14= 0, 15= 1, 16= 0, 17= 0, 18=
0, 19= 1, 20= 0, 21= 0, 22= 0, 23= 0, 24= 1, 25= 0, 26=
1, 27= 0, 28= 1, 29= 0, 30= 1, 31= 1, 32= 0, 33= 1, 34=
1, 35= 0, 36= 1, 37= 1, 38= 1, 39= 1, 40= 0, 41= 0, 42=
1, 43= 0, 44= 0, 45= 1, 46= 0, 47= 1
 Here variable numbers corresponds to the number on
the list of variables in above list. From this truth
values we can see the values of the three haplotypes are
101, 100, 001 and these haplotypes are capable to
explain the genotypes in our HIPP problem instance.
 Some congruence between these truth values and our
encoding model [1] will be very relevant to present.
Only one value of s variable in a set pertaining to one
genotype is set to 1 in the truth assignment. That was
our model's trick to select two

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

249

Table 1: Conversion of HIPP Problem Instance into SAT Problem Instance

HIPP Problem Instance

(A)

SAT Problem Instance (B)

1) 101

2) 201

3) 100

p cnf 47 140

1 -10 0

1 -19 0

4 -13 0

4 -22 0

7 -16 0

7 -25 0

-2 -10 0

-2 -19 0

-5 -13 0

-5 -22 0

-8 -16 0

-8 -25 0

3 -10 0

3 -19 0

6 -13 0

6 -22 0

9 -16 0

9 -25 0

30 -10 0

-30 10 0

-33 -13 0

-36 -16 0

33 10 -30 0

33 -10 30 0

-33 10 30 0

33 -10 -30 0

36 13 -33 0

36 -13 33 0

-36 13 33 0

36 -13 -33 0

36 16 0

39 -19 0

-39 19 0

-42 -22 0

-45 -25 0

42 19 -39 0

42 -19 39 0

-42 19 39 0

42 -19 -39 0

45 22 -42 0

45 -22 42 0

-45 22 42 0

45 -22 -42 0

45 25 0

1 -28 -11 0

-1 28 -11 0

1 -29 -20 0

-1 29 -20 0

4 -28 -14 0

-4 28 -14 0

4 -29 -23 0

-4 29 -23 0

7 -28 -17 0

-7 28 -17 0

7 -29 -26 0

-7 29 -26 0

28 29 0

-28 -29 0

-2 -11 0

-2 -20 0

-5 -14 0

-5 -23 0

-8 -17 0

-8 -26 0

3 -11 0

3 -20 0

6 -14 0

6 -23 0

9 -17 0

9 -26 0

31 -11 0

-31 11 0

-34 -14 0

-37 -17 0

34 11 -31 0

34 -11 31 0

-34 11 31 0

34 -11 -31 0

37 14 -34 0

37 -14 34 0

-37 14 34 0

37 -14 -34 0

37 17 0

40 -20 0

-40 20 0

-43 -23 0

-46 -26 0

43 20 -40 0

43 -20 40 0

-43 20 40 0

43 -20 -40 0

46 23 -43 0

46 -23 43 0

-46 23 43 0

46 -23 -43 0

46 26 0

1 -12 0

1 -21 0

4 -15 0

4 -24 0

7 -18 0

7 -27 0

-2 -12 0

-2 -21 0

-5 -15 0

-5 -24 0

-8 -18 0

-8 -27 0

-3 -12 0

-3 -21 0

-6 -15 0

-6 -24 0

-9 -18 0

-9 -27 0

32 -12 0

-32 12 0

-35 -15 0

-38 -18 0

35 12 -32 0

35 -12 32 0

-35 12 32 0

35 -12 -32 0

38 15 -35 0

38 -15 35 0

-38 15 35 0

38 -15 -35 0

38 18 0

41 -21 0

-41 21 0

-44 -24 0

-47 -27 0

44 21 -41 0

44 -21 41 0

-44 21 41 0

44 -21 -41 0

47 24 -44 0

47 -24 44 0

-47 24 44 0

47 -24 -44 0

47 27 0

haplotypes by using two sets of s variable in our HIPP
problem instance [1]. The encoding model
proposed that, s variables of set A, will form three
groups; variable number 10, 13, 16, variable number
11,14,17 and variable number 12, 15,18 pertaining to
genotype number 1,2 and 3 respectively will form a
group under the stipulation that each group will have

exactly one variable set to 1. If we observe the values
for these three groups of variable in the truth
assignment then we will find the congruence with the
stipulation. This is true for the other set of s values.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

250

 One more obvious congruence is that, the haplotype
we will select depends on which s variable is set to 1.
The s variable which is set to 1,the haplotype pertaining
to that variable will be used to explain the genotype
pertained to the s variable [1]. This is the case for both
set of values of s. For explaining the first genotype that
is for 101, we would need only one haplotype as it does
not contain any heterozygous site. In our arbitrary
example, from set A of s variable, variable number 10,
13,16 and from set B of s variable, variable number 19,
22, 25 pertaining to genotype number 1 have
congruence in their values. Variable number 10 and 19
which are the first variable in both set, is set to 1. As
the first variable is set to one in both set of s variable,
the first haplotype obtained from the truth assignment is
selected to explain the first genotype.
But, For genotype number 2 that is for 201, which
include heterozygous site, the values of s variables for
both sets are not identical. So for explaining these
genotype we need different haplotypes. Variable
number 11, 14, 17 from set A of s variables and
variable number 20,23,26 from set B of s variables,
both pertaining to genotype number 2, have different
value. From this two sets only variable number 11 and
variable number 26 are set to 1 respectively in the truth
assignment. Variable number 11 is the first variable on
set A of s and 26 is the third variable on the set B of s.
So first and third haplotype obtained in the truth
statement is selected to explain the second genotype.

5. SAT Solver

5.1 The Algorithm

 There are two classes of high-performance algorithms
for solving instances of SAT in practice: modern
variants of the DPLL algorithm, such as Chaff or
GRASP, and stochastic local search algorithms, such as
WalkSAT. Here, we are using the general DPLL
algorithm that is derived by Davis, Putnam, Logemann
and Loveland. With this algorithm, we will use three
preprocessing models and six branching rules
separately to find out which combination is best for the
SAT problem that is derived from a HIPP problem.
 The DPLL/Davis-Putnam-Logemann-Loveland
algorithm is a complete, backtracking-based algorithm
for deciding the satisfiability of propositional logic
formulae in conjunctive normal form, i.e. for solving
the CNF-SAT problem.
 The DPLL algorithm enhances over the backtracking
algorithm by the eager use of the following rules at
each step:

1) Unit Clause Propagation: Clauses of length
one are called unit clauses. Trivially, if a
function F includes a unit clause {u}, then

every truth assignment ƒ that satisfies F must
have ƒ (u) =1.

2) Monotone Literal Fixing: If a propositional
variable occurs with only one polarity in the
formula, it is called monotone. Monotone
literals can always be assigned in a way that
makes all clauses containing them true. Thus,
these clauses do not constrain the search
anymore and can be deleted.

3) Subsumption Rule: In the satisfiability
problem, if there is such a clause that has a
subset clause inside the program then that
clause has to be deleted. This rule is known as
subsumption rule.

5.2 Best Variant of DPLL Algorithm for HIPP
Problem

 Each recursive call of DPLL may invoke a choice of a
literal u; algorithms for making these choices are
referred to as branching rules. Several of the branching
rules commonly used in DPLL. Among them, we used
the following rules.

1) Jeroslow-Wang (1 sided) Rule
2) Jeroslow-Wang (2 sided) Rule
3) Minlen Rule
4) DSJ Rule
5) C-SAT Rule
6) Maximum Occurrence Rule

All branching rules except Maximum Occurrence Rule
are well known [11]. As a branching rule, Maximum
Occurrence Rule can be defined as follows ”branch on
the variable which has the most occurrence in the
working formula”. Choosing the variable which has
maximum occurrences might be a good rule. We
applied this rule to justify this statement.
 The DPLL algorithm has three possible ingredients:

1) Unit Clause Propagation
2) Monotone Literal Fixing
3) The Subsumption Rule

 The three ingredients listed here yield 23 different
versions of what might be called the Davis-Putnam
kernel (DP_Kernel) [11]. One of these eight versions,
using none of these three ingredients, reduces DPLL to
implicit enumeration. Each additional ingredient that is
incorporated into the Davis-Putnam kernel may reduce
the size of the DPLL tree, but it adds to the time spent
at each node of the tree. Without experimental results, it
seems hard to predict which of the combinations is
likely to be most efficient.
 Comparing algorithms by experiments requires a
measurement of algorithmic performance. The running
time is an obvious choice. However, it is not a good
choice on the criterion of reproducibility, because it is

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

251

affected by the data structure, the programming
language, the compiler, and the machine used; even the
programmers may introduce biases through the coding
process.
 A measurement of algorithmic performances that is
independent of these factors is the size of the DPLL
tree. For an unsatisfiable formula, it is one plus twice
the number of the times that the DPLL construct the
branching rule. So, it seems perfect to use the size of
DPLL tree for measuring algorithmic performance.

6. Distributed SAT Solver

 In the previous section, at the time of finding the
measurement of the algorithmic performance, we omit
the run time of the program because of its instability of
giving same result for different platform. But runtime
can not be omitted totally for solving HIPP problem
instance. Because, when HIPP problem instance is
converted into the SAT problem instance the problem
size increases by large magnitude, for the use of some
extra variables like ‘g’ variables, ‘s’ variables in the
encoding algorithm which itself dilate the problem
instance. The justification of the involvement of grid
environment has its existence on the gigantic
complexity of HIPP problem instance after converted to
SAT problem instance. The parallel algorithm for SAT
solver is supposed to be more convenient for HIPP
because it can handle the increased complexity in a
formidable way comparing to the to the traditional
serial SAT solver. As we know, each branch of the
DPLL tree is mutually exclusive from others for
computing, so if we compute the branches in parallel
and after computing if we can merge the result, then it
will reduce the run time of the total execution. This
idea thrived us to develop a parallel algorithm for the
SAT solver and we found our idea useful.

 For constructing the distributed version of the SAT
Solver, we use the Alchemi [7] software and C# coding
language. Alchemi, a .NET-based grid computing
framework provides the runtime machinery and
programming environment required to construct
desktop grids and develop grid applications. It allows
flexible application composition by supporting an
object-oriented grid application programming model in
addition to a grid job model.
 There are four types of distributed components
(nodes) involved in the construction of Alchemi grids

and execution of grid applications: Manager, Executor,
User & Cross-Platform Manager. The run time of the
execution is proportion to the inverse of the number of
the executer. That is, if we increase the number of the
executer, than the run time will be decreased.

7. Experiment Result

 7.1 Obtaining Real Genotype Data for SAT
Solver

We obtained our real genotype data for our SAT solver
from the hapmap project [10]. Genotype data that we
had obtained from this source was in the form of base
pair in a loci. Data from two populations (Han Chinese
in Beijing, China and Japanese in Tokyo, Japan) are
selected for our project. The encoder of HIPP problem
instance, described on section 5, will not take this
biological data as input, rather it will take a problem
instance with alphabet {0,1,2}. So, we have converted
the real genotype data into a data that is convenient for
our encoder. p1.txt and p2.txt shown in Table 2 are the
converted files.

Table 2: Files Convenient for The Encoder

Original Name of the File Converted

File Name

genotypes_ENm014.7q31.33_nonrs_CHB.txt p1.txt

 genotypes_ENm014.7q31.33_nonrs_JPT.txt p2.txt

7.2 Experiment results

The following table, Table 3 shows the experiment
result obtained by executing distributed sat solver on
the above mentioned problem instances under the
combination of six branching rules and three pre-
processing.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

252

Table 3: Performance Measurement of Distributed SAT Solver

Number of Recursive Calls

Problem Result Level
Preprocessing

Combinaton

|ropt

-

rused|
BR 01 BR 02 BR 03 BR 04 BR 05 BR 06

p1r6n12 SAT 130 COMB 01

| 6 -

6 |

= 0

371871 258751 DNF 97998 1110049 3971955

p1r6n12 SAT 130 COMB 02

| 6 -

6 |

= 0

4788603 371507 DNF 125261 1160264 6587852

p1r7n12 SAT 130 COMB 01

| 6 -

7 |

= 1

661365 349559 212981601 443183 402317 35625254

p1r8n12 SAT 130 COMB 01

| 6 -

8 |

= 2

1800481 1053514 180699667 1822693 3135 798389848

p2r4n12 UNSAT 130 COMB 01

| 5 -

4 |

= 1

205735 191801 1620977734 16327 21071 99841

p2r5n12 SAT 130 COMB 01

| 5 -

5 |

= 0

1135223 1074644 DNF 19386 109489 721379

p2r5n12 SAT 130 COMB 02

| 5 -

5 |

= 0

2886391 1108612 DNF 19247 119626 770141

p2r6n12 SAT 130 COMB 01

| 5 -

6 |

= 1

197007 71615 4778 200094 1977 DNF

Elaboration of terms used in Table 3:

1) pArBnC = Problem instance named ‘pA’ in
which ‘B’ number of haplotype is used to
explain the genotypes and ‘C’ number of
genotypes is used.

2) ropt = Optimal ‘r’ for a specific problem
3) rud = Used ‘r’ in that specific problem
4) DNF = Did Not Finished
5) COMB 01 = Unit Clause Propagation +

Monotone Literal Fixing

6) COMB 02= Unit Clause Propagation +

Monotone Literal Fixing + Subsumption Rule
7) BR 01 = 1 sided Jeroslow-Wang Rule
8) BR 02 = 2 sided Jeroslow-Wang Rule
9) BR 03 = Minlen Rule
10) BR 04 = DSJ Rule
11) BR 05 = C-SAT Rule
12) BR 06 = Maximum Occurrence Rule

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

253

7.3 Analysis of experiment

From the Table 3, we have come to some decisions.
Those are as follows:

1) Unit clause propagation must has to be used
for solving HIPP problem. From our some
experimental test, we saw that if we do not use
unit clause propagation, the result becomes
DNF.

2) Monotone literal minimize the number of
SETVAR a great deal but it need Unit clause
propagation as a helping hand.

3) Subsumption rule gives a better result where
used r is optimal. If you have a look on
problem p2r5n12, you can see that the
combination that uses subsumption rule gives
better result than the other one. But this is
hypothetical.

4) We know that near the optimal r the
complexity of the problem is much. And in this
condition the branching rule that can create
minimum SETVAR to solve the problem will
be the best branching rule for our problem.
Considering this condition, we find that “DSJ
Rule” is the best branching rule for solving
HIPP problem. You will find that in our
experiment table among the 8 problems, DSJ
rule produce least number of SETVAR for 5
problems to solve those problems.

8. Conclusion and Future Work

 After we have taken some promising preprocessing
steps such as unit, monotone and subsumption and
some well known branching rules, operating on input
which is taken from real haplotype data, the
experimental result shows the importance of
preprocessing steps and also of efficiency of the
brunching rule DSJ when HIPP by SAT solver is
entailed.
 With this conclusive finding we can propound some
future work direction in this area. Our SAT solver is
chronological backtracking. A non-chronological
backtracking based SAT solver can be customized
with our proposed pre-processing steps. At any stage of
that solver, the sub problems can be assigned
priority according to value returned by our proposed
branching rule DSJ. Our experiments shows that C-
SAT and 2-sided jeroslow wang are promising. A more
rigorous performance measurement can be done among
DSJ, C-SAT and 2-sided jeroslow wang rule with some
more experiments.

References

[1] Lynce, I. and Marques-Silva, “Efficient Haplotype
Inference with Boolean Satisfiability”. National
Conference on Artificial Intelligence (AAAI), Boston,
USA, 2006.

[2] HapMap Project overview.
http://www.genome.gov/10001688/ , 2007

[3] D. Gusfield and S.H.Orzach. “Handbook on
Computational Molecular Biology”, Chapter Haplotype
Inference, volume 9 of Chapman and Hall/CRC Computer
and Information Science Series,. CRC Press, 2005.

[4] M. Stephens, N. Smith, and P. Donelly. “A new statistical
method for haplotype reconstruction from Population
Data”. American Journal of Human Genetics., vol- 68, no-
4, pp. 978–989, 2001.

[5] Paola Bertolazzi, Alessandra Godi , Martine Labb´e2 and
Leonardo Tininini , “Solving haplotyping inference
parsimony problem using a new basic polynomial
formulation”. Technical Report 561, ULB, 2006.

[6] Center for discrete mathematics and theoretical computer
science, http://www.dimacs.rutgers.edu/ , 2007

[7] Dr. Rajkumar Buyya , Krishna Nadiminti. “The Gridbus
Middleware Manual”. A Manual for Girdbus Middleware,
pp. 10-16 , 2004.

[8] D. Gusfield, "Haplotype Inference by Pure Parsimony".
Proc. 14th Ann. Symp. Combinatorial Pattern Matching,
vol 2676, pp:144-155, 2003.

[9] Rui-Sheng Wang, Ling-Yun Wu, Zhen-Ping Li and Xiang-
Sun Zhang, “Haplotype reconstruction from SNP
fragments by minimum error correction” Bioinformatics.
vol. 21, no. 10, pp. 2456–2462, 2005.

[10] International HapMap Project, http://www.hapmap.org/,
2007.

[11] Ming, Ouyang, “Implementations of the DPLL
Algorithm”, PHD thesis. Rutgers University, 1999.

Md. Solimul Bor Chowdhury has
completed his undergrad program at
the department of Computer
Science and Information
Technology (CIT) of Islamic
University of Technology
(IUT,OIC), Gazipur, Bangladesh, in
2007. Now working as a full time
lecturer in Sylhet International
University (SIU) , Sylhet,

Bangladesh. His research interest is Haplotype Inference,
algorithms of ANN.

Md. Sakibul Hasan has
completed his undergrad
program at the department of
Computer Science and
Information Technology (CIT)
of Islamic University of
Technology (IUT,OIC),
Gazipur, Bangladesh, in 2007.
Now working as a Software

Engineer in Therap (BD) Ltd. His research interest is
Haplotype Inference, Mathematical algorithms and
Application framework on JAVA platform..

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

254

Sarder Anisul Haque has
completed his undergrad program
at the department of Computer
Science and Information
Technology (CIT) of Islamic
University of Technology
(IUT,OIC), Gazipur, Bangladesh,
in 2002. Currently, he is a
graduate student at the
department of Mathematics and

Computer Science of the University of Lethbridge,
Alberta Canada. He is also a assistant professor (on
leave) of Islamic University of Technology(IUT,OIC),
Gazipur, Bangladesh. His research interest is
Optimization Algorithm, Haplotype Inference and
Compiler Design.

