SAT with Global Constraints

Md Solimul Chowdhury
Department of Computing Science,
University of Alberta,
Edmonton, Alberta, Canada
Email: mdsolimu@ualberta.ca

Abstract—We present a tight integration of SAT with CP, called
SAT(gc), which embeds global constraints into SAT. A prototype
is implemented by integrating the state of the art SAT solver
ZCHAFF and the generic constraint solver GECODE. Experiments
are carried out for benchmarks from puzzle domains and
planning domains to reveal insights in compact representation,
solving effectiveness, and novel usability of the new framework.

I. INTRODUCTION

SAT solving is to encode a given problem by a collection
of propositional clauses and use a SAT solver to determine
whether there exists a variable assignment that satisfies every
clause. Modern SAT solvers are fairly efficient, largely due
to conflict-directed learning and backtracking, and have been
applied to a number of problem domains, such as Al planning,
bounded model checking, software diagnosis, theorem proving
for subsets of first-order logic [1].

Constraint Programming (CP), on the other hand, has been
applied to solving scheduling, verification, and some other
combinatorial search problems [2]. Historically, CP is devel-
oped from the Constraint Satisfaction Problem (CSP). For
practical applications, languages (such as GECODE', Choco?,
ECLiPSe?) have been developed to facilitate the definitions
of constraints in terms of primitive and built-in constraints.
One kind of built-in constraints are called global constraints,
which are pre-defined constraints over a non-fixed number of
variables [3]. The use of global constraints not only facilitates
problem representation, but also enables efficient reasoning
based on special data structures and dedicated constraint
propagators.

However, SAT and CP have their own weaknesses. For ex-
ample, SAT is incapable of compactly representing numerical
constraints, and due to the flat structure of clauses, useful
structured information of a given domain tends to get lost in
a clausal representation. On the other hand, CP is primarily
developed for solving constraints over variables with non-
trivial domains. Some real world problems do not fall into
this category, for which CP solving seems not as effective
as SAT solving. Al planning and bounded model checking
show characteristics of problems of this kind. Furthermore,
CP deals with a collection of constraints, not their possible
combinations. As a result, compositions of constraints, such

Thttp://www.gecode.org/
2www.emn.fr/z-info/choco-solver
3www.eclipseclp.org/

Jia-Huai You
Department of Computing Science,
University of Alberta,
Edmonton, Alberta, Canada
Email: you@cs.ualberta.ca

as conditional constraints (called dynamic constraints) and
disjunctive constraints, often present additional challenges and
require special treatments [4], [5].

In recent years, cross fertilization of these two areas has
become a topic of interest. It is argued that complex real
world applications may require effective features of both [1].
A number of approaches have been pursued in this direction
recently. For example, in SAT Modulo Theory (SMT) [6],
theory solvers of various kinds are incorporated into a SAT
solver, where part of the problem is encoded in an embedded
theory and solved by a dedicated theory solver. To deal
with numeric constraints, the SAT community has moved
to a different direction - pseudo Boolean constraints, where
constraints are expressed by linear inequalities over sum of
weighted Boolean functions (see, e.g., [7]). In [8], a framework
for integrating CSP style constraint solving in Answer Set
Programming (ASP) has been developed. More recently, the
usefulness of combining ASP and CP for industrial sized
problems is demonstrated in [9].

In this paper we develop a tight integration of CSP into SAT,
called SAT(gc). We focus on embedding global constraints
into SAT. Since any user defined constraint in CP can be
treated as a “global constraint”, this integration essentially
becomes one of integrating CP into SAT, with the feature
that when one is absent, the system behaves like the other.
In this way, unlike pseudo Boolean constaints, where SAT is
extended as a special case, this integration can be seen as a
proper extension of SAT as well as CP.

The rest of this paper is organized as follows. In the next
section, we briefly discuss preliminaries of SAT. In Section
III, we define the language of SAT(gc) and provide some
notations and examples. Then in Section IV, we develop
a solver for SAT(gc). We implemented a prototype called
SATCP, which is discussed in Section V. Section VI describes
the benchmarks used in our experiments with SATCP, their
SAT(gc) encoding, experimental results, and an analysis of
these results. Related work is discussed in Section VII, with
future directions discussed in Section VIII.

II. SAT PRELIMINARIES

In SAT, a formula is a finite set of clauses in propositional
logic, where a clause is a disjunction of literals and a literal
is either a proposition or its negation.

Let V be a finite set of propositional symbols, called
variables. For any v € V, v and —w are called the literals
of v denoting the positive and negative phases of variable v,
respectively. A clause is a disjunction of literals I V- - -V [,,.
A SAT formula is a conjunction of one or more clauses
c1 N\ Acy [6].

Given a propositional formula in the clausal form, the task
of determining whether there exists a variable assignment
such that the formula evaluates to true is called the Boolean
Satisfiability Problem, abbreviated as SAT [10].

III. LANGUAGE AND NOTATION

In the language of SAT, propositions are also called vari-
ables. To distinguish, let us call these variables normal vari-
ables. In the language of SAT(gc), we have two additional
types of variables/literals. The first is called a global constraint
literal, or just a gc-literal, which represents a call to a global
constraint. E.g., we can write a clause

allDif f(zo : {v1,v2}, 21 : {va2,v3}) V —p

where the first disjunct is a call to the global constraint
allDifferent in which xo and z; are CSP variables each of
which is followed by its domain. In the sequel, we will
use a named variable in the place of a gc-variable, with
the correspondence between it and the (call to the) global
constraint as part of a SAT(gc) instance.

A gc-literal is true if and only if the corresponding global
constraint is solvable, which means that there exists one or
more solutions for that gc-literal. Such a solution can be
represented by a conjunction of propositional variables, each
of which is a proposition representing that a given CSP
variable takes a particular value from its domain. These new
type of variables are called value variables. For each CSP
variable = and each value a in its domain, we write x, for
the corresponding value variable. Semantically, x, is true iff
x is assigned with value a. Since a value variable is just a
proposition, it can appear in clauses of a SAT(gc) instance.

As a CSP variable cannot be assigned to more than one
value from its domain, we impose the exclusive value axioms
(EVAs): for each CSP variable x and distinct domain values
a and b, we have a clause —x, V —zp. In the sequel, we
assume that EVAs are part of a SAT(gc) instance, so that
unit propagation enforces these axioms automatically.

With the language of SAT(gc) defined above, given a
SAT(ge) instance, a ge-variable in it is semantically equivalent
to a disjunction of conjunctions of value variables, augmented
by the EVAs, with each conjunction representing a solution
of the corresponding global constraint (if such a disjunction
is empty, it represents false). That is, a SAT(gc) instance is
semantically equivalent to a propositional formula. Given a
SAT(ge) instance II, let us denote by o (IT) this propositional
formula. We now can state precisely what the satisfiability
problem in the current context is:

Given a formula 11 in the language of SAT(gc), determine
whether there exists a variable assignment such that o(II)
evaluates to true.

A. Representation power of SAT(gc)

Let us consider some examples. In the first, suppose given a
4 by 4 board where each cell contains a number from a given
domain D. We can express a disjunctive constraint, “at least
one row has the sum of its numbers equal to a given number,
say k”, as follows

sum(z11:D, ..., x14:D,=k)V..V sum(zq1:D . . ., x44:D,=,k)

In SAT(gc) this can be written by a clause of four gc-
variables: vg, Vvg, Vg, Vg, , with the correspondence between
the gc-variables and global constraints recorded as part of
input instance. If, in addition, we want to express that there
is exactly one of sum constraints that holds, we can write

‘Ugi\/‘vgj 1§7'7JS47/L?£]

As another example, suppose we want to represent a con-
ditional constraint: given a graph and four colors, {r,b,y, p}
(for red, blue, yellow, and purple), if a node a is colored with
red, denoted by variable a,., then the nodes with an edge from
node a, denoted by edge, ,, for node n;, must be colored with
distinct colors different from red. This can be modeled by

—ay V medgeg n, V medgeqn, V...V medgeq n,, V vg

where v, denotes allDif f(xn, : {b,y,p}, ..., Zn,, : {b,y,p}).
In the language of SAT(gc), value variables may appear in
clauses. This makes it more convenient to represent concepts
related to CSP variables. E.g., the pigeonhole problem can
be represented by an allDif ferent constraint where pigeons
are CSP variables and holes are their domain values. One can
express further that any solution should be such that pigeon-
1 is either in the first hole or in the last hole. This can be
represented by a disjunction of two value variables.

IV. SAT(gc) SOLVER

We formulate a SAT(gc) solver in Algorithm 1, which is
an extension of the iterative DPLL algorithm given in [10].

Given an instance II in SAT(gc), the solver first performs
preprocessing by calling the function gc_preprocess() (Line
1, Alg. 1). It applies the standard preprocessing operations;
however, it will not make any assignments on gc-variables. If
gc_preprocess() does not solve the problem, then following a
predefined decision heuristic the solver branches on an unas-
signed variable (Line 5, Alg. 1) to satisfy at least one clause in
II. Each decision variable is associated with a decision level,
which starts from 1 and gets incremented on the subsequent
decision level by 1. Then, the procedure gc_deduce() is
invoked (Line 7, Alg. 1), and any new assignment generated
by the procedure gets the same decision level of the current
decision variable.

A. Procedure gc_deduce()

In standard Boolean Constraint Propagation (BCP), there is
only one inference rule, the unit clause rule (UCR). With the
possibility of value literals to be assigned, either as part of
a solution to a global constraint or as a result of decision or
deduction, we need two additional propagation rules.

1 status = gc_preprocess()
2 if status = KNOW N then
3 | return status

while {rue do

4
5 gc_decide_next_branch()

6 while true do

7 status = gc_deduce()

8 if status == INCONSISTENT then
9 blevel = current_decision_level

10 | gc_backtrack(blevel)

11 else if status == CONFLICT then

12 blevel = gc_analyze_con flict()

13 if blevel == 0 then

14 L return UNSAT

15 else

16 L gc_backtrack(blevel)

17 else if status == SATISFIABLE then
18 | return SATISFIABLE

19 else

20 L break

%Algorithm 1: An Iterative Algorithm for SAT(gc)

o Domain Propagation (DP): When a CSP variable =
is committed to a value a, all the occurrences of z in
other global constraints must also commit to the same
value. Thus, for any global constraint g and any CSP
variable x in it, whenever z is committed to a, Dom(x)
is reduced to {a}. Similarly, when a value variable is
assigned to false, the corresponding value is removed
from the domain of the CSP variable occurring in any
global constraint.

o Global Constraint Rule (GCR): If the domain of a CSP
variable of a global constraint v, is empty, v, is not
solvable, which is therefore assigned to false. If a global
constraint v, is assigned to true, the constraint solver
is called. If a solution is returned, the value variables
corresponding to the generated solution are assigned to
true; if no solution is returned, v, is assigned to false.

Now BCP consists of three rules, UCR, DP, and GCR,
which are performed repeatedly until no further assignment
is possible.

Since a global constraint v, in 11 is semantically equivalent
to the disjunction of its solutions (in the form of value
variables), when vy is assigned to false in the current partial
assignment, the negation of the disjunction should be implied.
Algorithm 1 does not do this explicitly. Instead, it checks the
consistency in order to prevent an incorrect assignment.*

“In our current treatment, this checking is performed at the end when a
SAT(gc) instance is solved. Then, the assignment of relevant value variables
of a global constraint instantiates the global constraint which is then checked
for consistency by a call to the CP solver.

In case of gc_deduce() returning INCONSISTENT, the
search backtracks to the current decision level (Line 10, Alg.
1). Otherwise, SAT(gc) checks if a conflict has occurred. If
yes, SAT(gc) invokes gc_analyze_con flict() (Line 12, Alg.
1), which performs conflict analysis, possibly learns a clause,
and returns a backtrack level/point.

B. Procedure gc_analyze_con flict()

We first recall DPLL based conflict analysis. The descrip-
tions are based on the procedural process of performing
(standard) BCP that implements what is called FirstUIP [11].

o Antecedent clause (of a literal): the clause that has forced
an implication on [.

o Conflicting clause: the first failed clause, i.e., the first
clause during BCP in which every literal evaluates to false
under the current partial assignment.

o Conflicting variable: The variable which was assigned
last in the conflicting clause.

o Asserting clause: the clause that has all of its literals
evaluate to false under the current partial assignment and
has exactly one literal with the current decision level.

e Resolution: The goal is to discover an asserting clause.
From the antecedent clause ante of the conflicting vari-
able and the conflicting clause ¢l (see Alg. 2), resolution
between the two combines cl and ante while dropping
the resolved literals. This has to be done repeatedly until
cl becomes an asserting clause.

o Asserting level: the second highest decision level in an
asserting clause. Note that by definition, an asserting
clause has at least two literals.’

Similar to conflict analysis in [10], gc_analyze_con flict()
first finds a conflicting clause cl. Then it attempts to find an
asserting clause using resolution, which is described by a while
loop (Lines 2-31, Alg. 2). Inside the loop, it first obtains the
last failed literal I3t in ¢l by choose_literal(cl) (Line 3, Alg.
2). After that, it checks the literal [it.

(a) If lit is a gc-literal, the conflict is due to the failure of
the most recent call to the constraint solver for lit. There
are two subcases.

(1) If no previous DP operation was performed on the
CSP variables in the scope of /it and no call to [t has
succeeded before, then the failure of [4¢ is intrinsic,
hence only the other literals in ¢/ may satisfy the
clause. Thus, we drop lit from cl (Line 6, Alg. 2).
There are three subcases.

(i) If ¢l is empty after dropping lit, the SAT(gc)
instance is not satisfiable (Line 9, Alg. 2).

(ii) If ¢l becomes unit after dropping lit, then cl
cannot be an asserting clause (by definition an
asserting clause has at least two literals in it). So,
we perform chronological backtracking, i.e., the
current decision level is returned as the backtrack-
ing level (Line 12, Alg. 2).

SThe process of resolution can produce a unit clause, in which case
chronological backtracking is performed.

1 cl = find_conflicting_clause()

2 while !isAsserting(cl) do

3 lit = choose_literal(cl)

4 if lit is a gc-literal then

5 if no DP is performed on the variables in the
scope of lit and lit never has succeeded then

6 drop lit from cl

7 if cl is empty then

8 back_dl =0

9 L return back_dl

10 else if cl is unit then

11 back_dl = current_decision_level

12 L return back_dl

13 else

14 dl = decision_level(lit)

15 if lit is a decision literal then

16 back_dl =dl —1

17 L return back_dl

18 else

19 back_dl = dl

20 L return back_dl

21 else

2 ante = antecedent(lit)

23 if ante == NULL then

24 back_dl = backtrack_point(lit)

25 L return back_dl

26 cl = resolve(cl, ante, lit)

27 lit = choose_literal(cl)

28 ante = antecedent(lit)

29 if ante == NULL and lit is not a decision
variable then

30 back_dl = backtrack_point(lit)

31 L return back_dl

32 add_clause_to_database(cl)
33 back_dl = clause_asserting_level(cl)

34 return back_dl
Algorithm 2: Conflict Analysis in SAT(gc)

(iii) Otherwise, continue with resolution.

(2) If the condition in (1) does not hold, i.e., lit is not
intrinsically unsolvable, then we perform chronolog-
ical backtracking. If lit is the decision variable of
the current decision level, the previous decision level
is returned as the backtrack level (Line 17, Alg. 2);
Otherwise it is forced in the current decision level,
in which case the current decision level is returned
as the backtracking level (Line 20, Alg. 2).

(b) If lit is not a gc-literal, it is then either a normal literal
or a value literal. Any conflicting (non-decision) normal
literal must have an antecedent clause, and a conflicting
value literal may or may not have an antecedent clause,

depending on how its truth value is generated.

If 2t has no antecedent clause (Line 23, Alg. 2), then it
is a value literal assigned by a DP, which is triggered by
a solution of a global constraint at the current decision
level. In this case, SAT(gc) backtracks to the point
where the corresponding global constraint is invoked for
trying to generate an alternative solution for the same
global constraint. The backtrack point is identified by the
procedure backtrack_point(lit) (Line 24, Alg. 2).

In gc_analyze_con flict(), after the cases (a) and (b), inside
the while loop, resolution is performed over cl and ante
which results in a new cl. Notice that, the resulting clause
cl also has all of its literals evaluated to false, and is thus
a conflicting clause. We then again check the last assigned
literal lit in cl. If lit does not have any antecedent clause and
lit is not a decision variable, then it becomes the case of (b).
Otherwise, this resolution process is repeated until ¢/ becomes
an asserting clause, or either one of the above two cases (a) or
(b) occurs. If an asserting clause is found, then the procedure
gc_analyze_conflict() learns the asserting clause ¢l (Line
32, Alg. 2) and returns the asserting level as the backtracking
level (Line 33, Alg. 2).

After gc_analyze_conflict() returns a backtrack level, if
it is O then SAT(gc) returns UNSAT (Line 14, Alg. 1).
Otherwise, it calls gc_backtrack(blevel) (Line 16, Alg. 1).

C. Procedure gc_backtrack(blevel)

The procedure gc_backtrack(blevel) distinguishes different
types of conflict cases:

(a) If the backtracking level is obtained from an asserting
clause, then the procedure gc_backtrack(blevel) back-
tracks to decision level blevel and unassigns all the
assignments up to the decision variable of blevel + 1.
After backtracking the learned clause ¢l becomes a unit
clause and the execution proceeds from that point in a
new search space within level blevel

(b) Otherwise, chronological backtracking is performed as
follows:

(1) If the backtrack point is obtained from
backtrack_point(lit), then gc_backtrack(blevel)
backtracks and unassigns assignments up to that
backtrack point in the current decision level.

(2) If conflict occurs because of a gc-literal fails to
generate an alternative solution, then we backtrack to
blevel and unassign assignments up to the decision
variable of blevel. ©

(3) If inconsistency is detected during deduction, then
gc_backtrack(blevel) performs backtracking simi-
larly as in (b-(2)).

In case of (b-1), as the backtrack point is a gc-literal

assignment, after backtracking SAT(gc) attempts to gen-

erate another solution for the same gc-literal and the

6 After dropping a failed gc-literal (Line 6, Alg. 2), if cl becomes unit, then
we return the current decision level (Line 11, Alg. 2) as the backtrack level.
If that failed gc-literal is a decision literal, then we backtrack to the previous
decision level of the current decision.

execution proceeds from that point. If no alternative
solutions exist, it becomes a case of failed gc-literal.
In other subcases of (b), after backtracking up to the
decision variable of blevel, that decision variable is
flipped. By flipping a variable, we mean to switch from
one phase to the other for a normal variable or value
variable, and switch from the current solution to the next
one for a gc-variable; if a normal or value variable is
already flipped or no further solutions for a gc-variable
exist, then backtracking is meant to backtrack up to the
decision variable of the preceding decision level (i.e.,
chronological backtracking).

D. Example

Suppose, as a part of a SAT(gc) instance I, we have
(cl) =rvd (e2) rVug (e3) tVsV-zy, Vp (cd) tVsV-zy, V-p

where vy is allDif f(z1 : {a}, z2 : {a,b}).

Let the current decision level be dl, and suppose at a
previous decision level di’ —s and —t were assigned, and at
level dl —r is decided to be true. Then, v, is unit propagated
from clause c2. The call for vy, returns the CSP solution
{x1 = a,z5 = b}, hence the value variables z;, and zq,
are assigned to true; but then a conflict occurs on c4. So,
gc_analyze_con flict() is called.

In the procedure gc_analyze_conflict(), c4 (conflicting
clause) and c3 (antecedent clause of the conflicting variable
p) are resolved so that ¢l becomes ¢tV sV—z,. Then, it is found
that the last assigned literal in ¢! is —z1,_, which is generated
by the solution of v,. So, it returns the assignment point of v,
as the backtrack point. The procedure gc_backtrack(blevel)
unassigns all assignments up to vy, and the constraint solver is
called again, but this time v, generates no alternative solution.
So, vy is assigned to false. Thus a conflict occurs on clause
2. Then gc_analyze_con flict() is again called.

It is found that the conflicting variable is a forced gc-
variable v, and a solution was previously generated for it. So,
gc_analyze_con flict() returns the current decision level as
the backtracking level, and gc_backtrack(blevel) backtracks
to the assignment —r, and flips it to r. This flipping imme-
diately satisfies clause c2 and the literal d is unit propagated
from cl. The search continues from there. [

E. Soundness and Completeness of SAT(gc) Solver

We claim Algorithm 1 is correct in the following sense:
Given a SAT(gc) instance 11, Algorithm 1 returns
SATISFIABLE if and only if I1 is satisfiable, and
it returns UNSATISFIABLE if and only if 11 is
unsatisfiable.

This assumes that the constraint solver is sound and complete,
and terminating. A proof sketch of the statement can be
constructed based on the following arguments.

o Algorithm 1 is terminating, as it traverses a finite search
tree where the nodes are normal variables, value vari-
ables, and gc-variables. A gc-variable has only one phase
when it is false (corresponding global constraint is not

solvable) or it has one or more phases corresponding
to one or more solutions when it is false. Then, the
termination of the constraint solver guarantees a nite
traversal of the search tree.

e The central argument regarding the correctness of Algo-
rithm 1 is, if conflict analysis in Algorithm 2 does not
involve any gc-variable, i.e., every “last failed literal”
has an antecedent clause, then Algorithm 1 essentially
reduces to the standard SAT solver employing the Firs-
tUIP scheme in conflict analysis, which is known to be
correct [11]. Otherwise, any learned clause involving a
gc-literal is non-unit after dropping it from cl. In this
case the failure can only be rescued by the rest of the
literals in clause cl, i.e., this dropping does not change
the satisfiability of II. In all the other cases involving a
gc-literal, backtracking is chronological so no satisfying
assignment may be missed.

o Finally, it SATISFIABLE is returned with an assign-
ment 6, then II is satisfiable. The only situation where this
may not be the case is when value variable assignments
in § imply a solution of a gc-variable while v, is assigned
to false in 6. This is prevented by consistency checking.

V. A PROTOTYPE IMPLEMENTATION OF SAT(gc)

We implemented a prototype called SATCP, by adopting
ZCHAFF’ as the DPLL engine and GECODE? as the CP solver.

The preprocessing function of ZCHAFF is modified slightly
to avoid solving gc-variables in preprocessing. Intuitively,
a solution of a gc-variable tends to make a good deal of
implications by DP and EVAs. Thus, we implemented an
eager variable selection heuristic, which gives higher priority
on gc-variables of a SAT(gc) formula II, according to the
order in which they appear in II. We modified the deduce
function of ZCHAFF slightly to implement GCR, DP and
EVAs. From the application perspective, a gc-variable occurs
only in a unit clause positively. So GCR is implemented
only for positive phased gc-literals. For conflict analysis and
backtracking, we rely on the existing mechanisms of ZCHAFF,
with slight modification. In SATCP, when a conflict occurs
due to a gc-literal assignment, we raise a flag by assigning
respective value to a designated flag variable. The conflict
analyzer uses this flag to identify types of conflict that have
occurred. As gc-literals are only assigned as decision literals,
they cannot be forced. So, in case of any gc-literal conflict in
SATCP, the conflict analyzer function returns blevel and the
backtracking function unassigns all the assignments up to the
decision variable of blevel.’

CSP problems are modeled in GECODE by creating a
subclass of a built-in class named Space and specifying the
model inside that subclass. The solutions for a CSP model are
searched by creating search engines [12]. From the CP per-
spective, every global constraint in a given SAT(gc) formula

"http://www.princeton.edu/ chaff/zchaff.html

8http://www.gecode.org/

For gc-failure-conflict, blevel is the previous decision level of the current
decision and for value-variable-conflict, blevel is the current decision level.

is an independent CSP problem. So, before starting executing
SATCP, for every gc-variable v, in that formula, we create a
subclass of the class Space, which models the global constraint
as an independent CSP model. When SATCP is invokved, for
each of the CSP models a search engine is created globally.
SATCP uses the Branch and Bound (BAB) search engine,
which is built-in in GECODE [12]. BAB search engine has a
public method, named next(), which returns the next solution
for the CSP model to which it is attached. When there is
no more solution for the attached model, it returns null and
expires.

In SATCP, whenever a gc-variable v, is assigned, SATCP
executes the next() method of the search engine attached to
the model of v, to get the next solution of v,. When the
attached search engine does not find any alternative solution
for vy, it returns null and expires. If v, is assigned again (via
backtracking), SATCP creates a new search engine at the local
scope which searches for alternative solutions for v,.

The reader is referred to [12], [13] for more details.

VI. EXPERIMENTS

We have carried out experiments with problems from puzzle
domains and problems from planning domain. Here we report
three of them as they are representative of some key aspects
of our integration: the Latin square problem, the magic square
problem, and the planning problem of block stacking with
numerical constraints. The experiments were conducted in a
UNIX server assembled with 2.10 GHZ Intel Core 2 Duo CPU
(T5600) and 4GB RAM. For all the experiments, the cutoff
time is 15 minutes, and the reported times are in second.

A. The Latin Square Problem

A Latin square (LS) of order n is an n x m array of
n numbers in which every row and columns must contain
distinct numbers. We encode the constraint “no two numbers
are assigned to the same cell” by negative binary clauses and
the constraint “every number must appear exactly once in a
row and in a column” by using n allDiff global constraints,
which are

n
/\ allDif f(ak ok ...k 2k
k=1
where the domain of the CSP variables is {1...n}. The
assignment x¥ = j (1 <4, 7,k < n) asserts that the number k
is placed on the i*" row and ;" column of the square.

We ran the LS problem on ZCHAFF (with SAT encoding)
and on SATCP (with SAT(gc) encoding) for instances of
different sizes. The running times for ZCHAFF and for SATCP
are given in Table I. Clearly, SATCP outperformed ZCHAFF.

To encode LS problem in SAT, the total number of clauses
required are O(n*) [14], while a SAT(gc) instance has O(n?)
clauses. Thus, by the use of global constraints, the SAT(gc)
encoding is more compact. This plus the efficient propagators
for allDif f global constraint as implemented in GECODE is
the main reasons for the better performance of SATCP.

ZCHAFF | SAT
. 5 O(gc) n | SAT(gc)
. 5 5 3 [0.00058
= 5 5 Z 002
6 | 001 0.01 2 8'8}1
71 002 0.01 : s
8 142 030 . 3.
9 | 4820 10.02 —
10 — 169.51 TABLE TI
TABLE 1 EXPERIMENTS WITH NMS

UNDER MONOLITHIC

EXPERIMENTS WITH LATIN
CONSTRAINT.

SQUARE PROBLEM.

B. The Normal Magic Square Problem

A normal magic square (NMS) of order n is an arrangement
of n? numbers, usually distinct integers, in a square, such
that the sum of n numbers in rows, columns, and in both
diagonals are equal to a constant number. The constant sum
over rows, columns and diagonals is called the magic sum,
which is known to be n(n? + 1)/2.

We encode the NMS problem in two different encod-
ings, referred to, respectively, as monolithic encoding and
decomposed encoding. In the former the whole NMS problem
is encoded by a single gc-variable, which is defined by
a allDiff constraint over n? cells (modeling the distinct
constraint) and 2n+2 sum constraints each of which is over n
different cells. This encoding illustrates how CP is embedded
in SAT. Notice that when SATCP runs monolithic encoding, all
the variables and constraints are put inside the same constraint
store.

Table II shows the experimental results for monolithic
encoding. By this encoding we are able to solve the magic
square problem up to size 7 x 7 by SATCP within 15 minutes
(clearly, this is entirely due to the hours of GECODE). These
results are consistent with the results of [15], as with this
encoding SATCP runs much faster than the ASP solver CLASP,
which uses aggregates to encode numerical constraints. For
example, CLASP solves the NMS problem of order 7 in 450.58
seconds on a similar server. It also demonstrates that, the
propagators of global constraints from CSP are more efficient
than the aggregates in logic programming.

The decomposed encoding is contrasted with the monolithic
encoding, where the monolithic constraint is decomposed into
a collection of global constraints and SAT clauses. In this
encoding, the allDiff global constraint (of the monolithic
encoding) is encoded by negative binary clauses and the sum
constraints are encoded by 2n + 2 sum constraints. With this
decomposed encoding, SATCP solved NMS of order 3 in 3.17
sec. But for the instances of higher order, SATCP failed to
generate a solution within 15 minutes.

In contratst to monolithic encoding, when SATCP runs the
decomposed encoding, the related sum global constraints are
put into separate constraint stores. As a result, when a CSP
variable x is assigned to a value, the propagators for other
related global constraints (those having x on their scope) can
not be executed. Therefore, the result of DP operation are

not propagated to other related CSP variables. It results in an
exponential number of enumerations of CSP solutions via a
series of backtracking between the related global constraints.
For this reason, SATCP performed poorly. In essence, poor
propagation due to the processing of calls to different but
related global constraints in different constraint stores is the
reason of this inefficiency.

C. Block Stacking with Numerical Constraints

In a table, there are n stacks, each having m; blocks, where
1 < i < n. Let block;; be the j" (1 < j < m;) block of
ith (1 < ¢ < n) stack. In the initial configuration in every
stack ¢ the first block block;; is placed on the table. If m; >
1, then block;; is placed on block;(;_1). Every block block;;
has a weight w;;. We need to generate a plan for building a
new stack of blocks by taking exactly one block from each of
the initial n stacks in such a way that two constraints hold,
where Constraint 1 is: “The total weight of the selected blocks
should be equal to a certain total weight W;”, i.e., if block
jt,5%...4™ are selected respectively from stacks 1,2...n,
then wy j1 +wg o +- - ~+w;ji+- - ~+wyjn = Wo; and Constraint
2 is: “The block selected from the i*" stack must be placed
over the block selected from the (i — 1) stack.”

Constraint 1 is encoded by using a sum global constraint:
sum(stacky, stacks, . .., stacky, Wy), where Dom/(stack;)
= {wi1, ws2, ... Wi, }. The assignment stack; = w;; asserts
that the j*" block form the i*" stack is selected for building
the goal stack.

From a STRIPS specification, we generate a planning in-
stance that models constraint 2. We also introduce m (where
m = my + ... + my) propositional variables, which are the
value variables corresponding to the domain values of stack;.
Then for every pair of blocks, block;; and block; j; (where
i/ =i+ 1), we add their corresponding value literals to their
stacking action (goal action) clauses at the goal layer. In our
experiments, we use action based CNF encoding, generated
by SATPLAN [16]. We have solved a number of instances
with different numbers of blocks and stacks for this planning
problem. The results are shown in Table III.

VII. RELATED WORK
A. SAT(gc) versus SMT

Both adopt a DPLL based SAT solver as the overall solver.
The embedded component of an SMT solver is a theory
solver and for SAT(gc) it is a constraint solver. The SMT
solver uses a theory solver to determine the satisfiability of
a portion of a T-formula. On the other hand, the SAT(gc)
solver uses a constraint solver to compute a solution of a
global constraint for which the constraint solver is invoked.
In SMT, whenever an inconsistent assignment is found by the
T-solver, it informs the DPLL solver about the inconsistency
and the T-solver sends information back to the DPLL solver
as a theory lemma, so that the DPLL solver can learn a
clause and backtrack to a previous point. On the other hand,
in SAT(gc) no such conflicting information is sent back
from the constraint solver. The DPLL component of SAT (gc)

Stacks: Initial Weights Wo Time
Blocks Config./ (sec)
/Stack Goal
Config.
2:2 S1:(ON B A) S2:(OND C) | wa=4,wp=5 10 0.03
/ (ON C B) wo=5wp=7
2:3 S1:(ON B A) (ON C B) wA=5,wp=06 11 0.18
S2:(ON E D) (ON F E) wo=T,wp=3
/ (ON E B) wp=5wr=8
3:2 SI:(ON B A) S2:(OND C) | wa=3,wp=4 7 0.29
S3: (ON FE) we=2,wp=4
/(ON E C) (ON C A) wE=5wpF=2
3:3 S1:(ON B A) (ON C B) wA=5wp=6 13 1.29
S2:(ON E D) (ON F E) we=7, wp=3
S3:(ON H G) (ON I H) wg=5, wrp=8
/ (ON G D) (ON D A) we=5, wy=8
wr=5
2:6 S1:(ON B A) (ON C B) wA=9,wp=06 12 130.74
(ON D C) (ONE D) we=5wp=3
(ON F E) wE=5wpF=8
S2:(ON G H) (ON I H) wa=3,wyg=8
(ONJI) (ONKJ) wr=T,w =3
(ON L K) wi=T,w=3
/ (ON G A)

TABLE III
EXPERIMENTS WITH BLOCK STACKING WITH NUMERICAL CONSTRAINTS.

identifies the conflicts/inconsistencies related to the global
constraint at hand and does the necessary domain setup for
the respective CSP variables, clause learning and backtracking.
The constraint solver is used as a black box, to solve the global
constraints for which it is called.

B. Relation with Clingcon

In [8], following the lazy SMT approach, a framework
for integrating CSP style constraint solving in Answer Set
Programming (ASP) has been developed, which is called
CDNL-ASPMCSP. The ASP solver passes the portion of its
(partial) Boolean assignment associated with constraints to a
CP solver. The constraint solver checks the satisfiability of
these constraint atoms. The call results either in a unsatisfiabil-
ity signal or in an extension of the current partial assignment.
For conflicting driven analysis, every inferred atom needs
a reason from which it is inferred. As CP solver does not
provide any reason for the solutions it generates, this approach
constructs a non-trivial reason from the structural properties
of the underlying CSP problem in the ASP program at hand.
From this constructed reason, it finds a learned clause and
backtracking level by using resolution based conflict analysis
process. Currently, global constraints are not tightly integrated
into CDNL-ASPMCSP. The semantic issue of allowing global
constraints in non-monotonic rules is nontrivial. In contrast,
SAT(gc) is monotonic.

C. SAT(gc) verses Lazy Clause Generation

In [17] a tight integration of SAT and CP is presented, where
domains of CSP variables are encoded by a given encoding
scheme, namely regular encoding. Whenever a CSP variable
is assigned a value by unit propagation of the attached SAT
solver, CSP propagators corresponding to that assignment are

invoked. Instead of returning reduced domains, the attached
CSP solver returns some propagation rules, which emulate
the functionality of those propagators. These rules are then
converted into SAT clauses. The converted clauses are added
one by one as learned clauses into the SAT clause database.

This approach requires heavy modification of the attached
solvers. In our approach we can incorporate an off-the-shelf
CSP solver more easily; when SAT is absent SAT (gc) behaves
like CSP. But for the solver described in [17], there is no
guarantee.

D. SAT(gc)verses Universal Booleanization

In [18] CSP instances are translated into SAT, where the
translation is focused on one particular CSP modeling lan-
guage called MiniZinc. This approach translates a MiniZinc
CSP model into CNF, which is then solved by a SAT solver. It
bundles MiniZinc and a SAT solver into one tool, named Fzn-
Tini. First, the input MiniZinc model is Booleanized (not into
CNEF, but into a boolean version of the MiniZinc CSP model)
into a language, which the authors have called Booleanized
FlatZinc, by following a given translation approach for vari-
ables and constraints. The conversion of Booleanized FlatZinc
version into DIMACS CNF is trivial. That DIMACS CNF
instance is then solved by the SAT solver available in FznTini.

FznTini is a very specialized tool for solving MiniZinc CSP
models by SAT solvers. Moreover, their translation scheme
does not support global constraints.

VIII. CONCLUSION AND FUTURE WORK

We have developed an algorithmic framework, namely
SAT(gc) for embedding global constraints in a DPLL based
SAT solver, in a tight fashion. We have shown that SAT(gc)
is more versatile than SAT or CP alone. From the CP point of
view, SAT(gc) supports conditional and disjunctive constraints
in the same framework, and from the SAT point of view,
certain types of structured information can be encoded by
global constraints. We have seen that for the language where
global constraints as well as value variables (Boolean variables
representing CSP variables taking values) are allowed, the
standard BCP is not enough, and we need to add three
more deduction rules in addition to the unit clause rule.
The language of SAT(gc) also makes conflict analysis more
involved. However, as we have seen, an integration of CP and
SAT can make use of the existing mechanism of conflict-
directed learning and backtracking in SAT, with additional
cares to handle conflicts resulted from the presence of global
constraints and value variables.

We implemented a prototype, called SATCP , by adopting
the SAT solver ZCHAFF and CP solver GECODE. Experi-
ments are carried out for benchmarks from puzzle domains
and planning domains, which leads to insights in compact
representation, solving effectiveness, and novel usability of the
new framework. A weakness of the current implementation
of SATCP is that calls to different global constraints are
processed in different constraint stores, which results in poor
propagation. To avoid this, it appears that the constraint solver

needs to be modified so that the related propagators are called
upon a CSP variable assignment by the DPLL component of
SATCP. Also, the search engines created at the beginning of
the execution of SATCP for each of the global constraints are
required to be utilized for the failed gc-variables to avoid
unnecessary overhead. Note that these weaknesses, though
present in the current version of SATCP, is not an intrinsic
problem in SAT(gc).

We plan to address these efficiency related issues in the
further versions of SATCP.

REFERENCES

[1] L. Bordeaux, Y. Hamadi, and L. Zhang, “Propositional satisfiability
and constraint programming: A comparative survey.” ACM Computing
Surveys, vol. 38, no. 4, 2006.

[2] F. Rossi, P. van Beek, and T. Walsh, Handbook of Constraint Program-
ming (Foundations of Artificial Intelligence). Elsevier Science Inc.,
2006.

[3] W.-J. van Hoeve and I. Katriel, “Global constraints,” in Handbook of
Constraint Programming, F. Rossi, P. van Beek, and T. Walsh, Eds.
Elsevier, 2006, ch. 7.

[4] D. Cohen, P. Jeavons, and P. Jonsson, “Building tractable disjunctive
constraints,” Journal of the ACM, vol. 47, no. 5, pp. 826-853, 2000.

[5] S. Mittal and B. Falkenhainer, “Dynamic constraint satisfaction prob-
lems,” in Proc. AAAI’90, 1990, pp. 25-32.

[6] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT
modulo theories: from an abstract Davis-Putnam-Logemann-Loveland
procedure to DPLL(T),” Journal of the ACM, vol. 53, no. 6, pp. 937—
977, 2006.

[7] D. Chai and A. Kuehlmann, “A fast pseudo-boolean constraint solver,”
IEEE Transactions on Computer-Aided Design of Intergrated Circuits
and Systems, vol. 24, no. 3, pp. 305-317, 2005.

[8] M. Gebser, M. Ostrowski, and T. Schaub, “Constraint answer set
solving,” in Proc. ICLP’09, 2009, pp. 235-249.

[9] M. Balduccini, “Industrial-size scheduling with asp+cp,” in Proc. LP-

NMR’11, 2011, pp. 284-296.

L. Zhang and S. Malik, “ The quest for efficient Boolean satisfiability

solvers,” in Proc. CAV’02, ser. LNCS 2404. Springer, 2002, pp. 17-36.

L. Zhang, C. Madigan, M. Moskewicz, and S. Malik, “Efficient conflict

driven learning in a boolean satisfiability solver,” in Proc. The 2001

IEEE/ACM international conference on Computer-aided design, 2001,

pp. 279-285.

C. Schulte, G. Tack, and M. K. Lagerkvist, Modeling and Programming

with Gecode, 2008.

M. S. Chowdhury, “SAT with global constraints,” Master’s thesis,

University of Alberta, 2011.

I. Lynce, “Propositional satisfiability: Techniques, algorithms and ap-

plications,” Ph.D. dissertation, Instituto Superior Tcnico, Universidade

Tcnica de Lisboa, 2005.

Y. Wang, J. You, F. Lin, L. Yuan, and M. Zhang, “Weight constraint pro-

grams with evaluable functions,” Annals of Mathematics and Artificial

Intelligence, vol. 60, no. 3-4, pp. 341-380, 2010.

H. Kautz, B. Selman, and J. Hoffmann, “SatPlan: Planning as satis-

fiability,” in Abstracts of the 5th International Planning Competition,

2006.

O. Ohrimenko, P. J. Stuckey, and M. Codish, “Propagation via lazy

clause generation,” Constraints, vol. 14, no. 3, pp. 357-391, 2009.

J. Huang, “Universal booleanization of constraint models,” in CP, 2008,

pp. 144-158.

(10]

(11]

[12]
[13]

[14]

[15]

[16]

(17]

[18]

