
Flexible Approximators for Approximating Fixpoint
Theory

Fangfang Liu1, Yi Bi2, Md. Solimul Chowdhury3, Jia-Huai You3, Zhiyong Feng2

1 School of Computer Engineering and Science, Shanghai University, China
2 School of Computer Science and Technology, Tianjin University, China

3 Department of Computing Science, University of Alberta, Canada

Abstract. Approximation fixpoint theory (AFT) is an algebraic framework for
the study of fixpoints of operators on bilattices, which has been applied to the
study of the semantics for a number of nonmonotonic formalisms. A central
notion of AFT is that of stable revision based on an underlying approximating
operator (called approximator), where the negative information used in fixpoint
computation is by default. This raises a problem in systems that combine dif-
ferent formalisms, where both default negation and established negation may be
present in reasoning. In this paper we extend AFT to allow more flexible ap-
proximators. The main idea is to formulate and propose ternary approximators,
of which traditional binary approximators are a special case. The extra parame-
ter allows separation of two kinds of negative information, by entailment and by
default, respectively. The new approach is motivated by the need to integrate dif-
ferent knowledge representation and reasoning (KRR) systems, in particular to
support combined reasoning by nonmonotonic rules with ontologies. However,
this small change by allowing flexible approximators raises a mathematical ques-
tion - whether the resulting AFT is a sound fixpoint theory. The main result of
this paper is a proof that answers this question positively.

1 Introduction

AFT, also known as the theory of consistent approximations, is a powerful framework
for the study of fixpoints for nonmonotonic logics, which has applied to study seman-
tics for various types of logic programs [1–4, 6, 14], argumentation systems [7, 17], and
default and autoepistemic logic [5]. Under this theory, the semantics of a logic program
is defined by respective fixpoints closely related to an approximator on a bilattice. The
approach is highly general as it only depends on mild conditions on approximators.
The well-founded fixpoint of an approximator defines a well-founded semantics (WFS)
and exact stable fixpoints define an answer set (or stable) semantics. As different ap-
proximators may represent different intuitions, AFT provides a way to treat semantics
uniformly and allows to explore alternatives by different approximators. The properties
of a semantics hold even without a concrete approximator. For example, the least fix-
point approximates all other fixpoints and, mathematically this property holds for any
approximator. Practically, since the WFS is generally easier to compute, it can be em-
ployed as an approximation or as a mechanism of constraint propagation in computing
exact stable fixpoints.

2 Fangfang Liu, Yi Bi, Md. Solimul Chowdhury, Jia-Huai You, Zhiyong Feng

In this paper we address a theoretical question that arises in appyling the cur-
rent AFT to integrating different KRR formalisms, in particular to the so-called FOL-
programs, which are combined knowledge bases KB = (L,Π), where L is a theory
of a decidable fragment of first-order logic and Π a set of rules possibly containing
some arbitrary first-order formulas. This is one of the recent approaches to combining
answer set programming (ASP) with description logics (DLs) [8, 12, 13, 15, 20, 21]. As
an illustration, assume L contains a formula that says all students are entitled to ed-
ucational discount, ∀x St(x) ⊃ EdDiscount(x). Suppose in an application anyone
who is not employed but registered for a class is given the benefit of a student. We can
write a rule: St(X)← TakeClass(X,Y), not HasJob(X). Thus, that such a person
enjoys educational discount can be inferred directly from knowledge base L. Note that
unemployment is typically verified by default, e.g., by lack of tax record for income.

In AFT, to define a semantics for a nonmonotonic logic is to define an approxima-
tor, which is required to be monotone on the underlying bilattice. Then the well-known
Knaster-Tarski fixpoint theory [18] can be generalized to chain-complete posets. The
least fixpoint of an approximator A is called the Kripke-Kleene fixpoint of A. In logic
programming, this fixpoint corresponds to what is typically called Kripke-Kleene se-
mantics due to the fact that it does not compute unfounded atoms. E.g., given a logic
program P = {a← a}, its Kripke-Kleene semantics is that a is undefined or unknown
in 3-valued logic, while the more desirable well-founded and stable semantics both as-
sign a to false, since making it false does not invalidate the rule.

To be able to capture unfounded atoms is a key feature of ASP semantics. In the
context of ASP, a pair (u, v) on the bilattice built from the power set of atoms under
the subset relation is viewed as a 3-valued interpretation (also called a partial inter-
pretation): atoms in u are true, those in v are possibly true, thus those not in v are
false and the atoms that are not true but possibly true take the truth value undefined (or
called unknown). Roughly speaking, to capture unfounded atoms is to compute those
atoms that can be assigned to false without invalidating any rule. In AFT, this is accom-
plished by what is called a stable revision operator, which maps a given pair (u, v) to
a new pair by two least fixpoints, denoted (lfp(A1(·, v)), lfp(A2(u, ·))), where A1(·, v)
and A2(u, ·) are the projection operators of A on its first and second components, re-
spectively. Intuitively, given (u, v), lfp(A1(·, v)) computes the atoms that must be true
and lfp(A2(u, ·)) computes those that are possibly true. Then, any atoms that are not
possibly true are false.

However, a drawback in the construction of lfp(A2(u, ·)) is that the operatorA2(u, ·)
has no access to v. As a result, in applying AFT to logic programs, two kinds of false
atoms are mixed together and used in the computation of lfp(A2(u, ·)). E.g., to compute
A2(u, u), the first step in the iterative construction of lfp(A2(u, ·))1, two kinds of false
atoms in (u, u) are used in the computation: for an atom a, if a 6∈ v then it is false by
the given partial interpretation (u, v); if a 6∈ u and a ∈ v (a is not true but possibly true)
then a being false in (u, u) (since a 6∈ u) is made by default.

1 By the Knaster-Tarski fixpoint theory, the least fixpoint can be computed iteratively from the
least element of the underlying lattice - in this case, u is the least element in the lattice domain
represented by the interval [u,>].

Flexible Approximators for Approximating Fixpoint Theory 3

Though this notion of stable revision works well for many nonmonotonic logics,
problem arises in combining ASP with classic logic, e.g., for FOL-programs, where
one faces two undesirable possibilities in computing A2(u, v) - under estimate or over
estimate of negative knowledge.

To illustrate the point of “over estimate”, assume an FOL-program KB = (L,Π)
where L = {P (a)} and Π = {P (a)← P (a); P (b)← F}, where F is some arbitrary
formula. Stable revision starts from the least element on the underlying bilattice, which
is (⊥,>) (in this context, ⊥ denotes the empty set and > the set of all atoms). Given
(⊥,>), we need to compute (lfp(A1(·,>)), lfp(A2(⊥, ·))), where the first step in com-
puting the latter is to compute A2(⊥,⊥).2 If approximator A is defined in a way that
A2(⊥,⊥) uses L and partial interpretation (⊥,⊥) as premises, we will have inconsis-
tent premises, as P (a) is false in (⊥,⊥) which contradicts L. If we allow absurdity to
lead to the derivation of P (b), we may then compute an unintended conclusion: P (b) is
possibly true. We will have more to say about under estimate later, in Section 3.

This paper addresses the above issue by proposing the notion of ternary approxi-
mators, where the extra parameter holds the information on (already computed) neg-
ative atoms. Though this increases representation flexibility, a theoretical question is
whether the resulting AFT is a sound fixpoint theory, in that a monotone approximator
is guaranteed to possess fixpoints and a least fixpoint. The main result of this paper is a
mathematical development that shows the resulting AFT is indeed sound.

The next section introduces background on bilattices, followed by Section 3 on
extending AFT. As an example, Section 4 applies the extended AFT to FOL-programs.
This is followed by a discussion of related work and future directions.

2 Background

We assume familiarity with Knaster-Tarski fixpoint theory [18]. Briefly, a lattice 〈L,≤〉
is a poset in which every two elements have a least upper bound (lub) and a greatest
lower bound (glb). A chain in a poset is a linearly ordered subset of L. A poset 〈L,≤〉
is chain-complete if it contains a least element ⊥ and every chain C ⊆ L has a lub in
L. A lattice 〈L,≤〉 is complete if every subset S ⊆ L has a lub and a glb.

Let 〈L,≤〉 be a complete lattice. The structure 〈L2,≤,≤p〉 denotes the induced
(product) bilattice, where ≤p is called the precision order and defined as: for all x, y,
x′, y′ ∈ L, (x, y) ≤p (x′, y′) if x ≤ x′ and y′ ≤ y. The ≤p ordering is a complete
lattice ordering on L2. In this paper, we refer to a lattice 〈L,≤〉 simply by L, which is
always assumed to be complete, and denote the induced bilattice by L2.

We say that a pair (x, y) ∈ L2 is consistent if x ≤ y, inconsistent otherwise, and
exact if x = y. We denote the set of all consistent pairs by Lc. Note that the restriction
to Lc does not form a sublattice. It is a chain-complete poset, with maximal elements
being exact pairs. A consistent pair (x, y) ∈ Lc defines an interval, denoted by [x, y],
which defines the set {z | x ≤ z ≤ y}. A consistent pair (x, y) in Lc can be seen as
an approximation of every z ∈ L such that z ∈ [x, y]. In this sense, the precision order
≤p corresponds to the precision of approximation, while an exact pair approximates the
only element in it.

2 again, because ⊥ is the least element of the domain [⊥,>].

4 Fangfang Liu, Yi Bi, Md. Solimul Chowdhury, Jia-Huai You, Zhiyong Feng

An operator O on a complete lattice or a chain-complete poset L is monotone if
for all x, y ∈ L, x ≤ y implies O(x) ≤ O(y). Such a monotone operator possesses
fixpoints and a least fixpoint. We denote the least fixpoint of O by lfp(O). An element
x ∈ L is a pre-fixpoint of O if O(x) ≤ x; it is a post-fixpoint of O if x ≤ O(x).

3 An Extended Theory of Approximation

The original AFT is built on Lc. We generalize AFT to L2 by addressing two issues.
The first is on the notion of approximator, and the second is on enriching algebraic
manipulation by a stable revision operator.

An approximatorA is a≤p-monotone operator onL2 that approximates an operator
O on L. In the original theory, it is required thatA(z, z) = (O(z),O(z)), for all z ∈ L;
i.e.,A extendsO on all exact pairs. This is desired if we only deal with consistent pairs.
However, if A(z, z) is inconsistent, it is possible that O(z) lies outside of [x, y], as an
exact pair in general may not be a maximal element in L2. This leads to the first attempt
to define an approximator on L2 in Def. 1 below as presented in [2].

We shall remark that the authors of [2] formulated an extension that treats all pairs
in L. Since a primary application area of our work is on integrating different formalisms
where inconsistency frequently arises, it is natural to build our work on top of [2].

Definition 1. LetO be an operator on L. We say thatA : L2 → L2 is an approximator
of O iff the following conditions are satisfied:

– For all x ∈ L, if A(x, x) is consistent then A(x, x) = (O(x),O(x)).
– A is ≤p-monotone.

Example 1. (Borrowed from [2]) To see why the consistency condition “A(x, x) is con-
sistent” in the definition is critical, consider a complete lattice where L = {⊥,>} and
≤ is defined as usual. Let O be the identify function on L. Then we have two fixpoints,
O(⊥) = ⊥ and O(>) = >. Let A be an identity function on L2 everywhere except
A(>,>) = (>,⊥). Thus, A(>,>) is inconsistent. It is easy to check that A is ≤p-
monotone. Since A(⊥,⊥) = (O(⊥),O(⊥)), and (⊥,⊥) is the only exact pair such
that A(⊥,⊥) is consistent, A is an approximator of O, according to the above defi-
nition. But A(>,>) 6= (O(>),O(>)), even though O(>) = >. If the consistency
condition is not imposed on the definition, mappings like the operator A above would
be ruled out as approximators, which means we fail to accommodate inconsistencies as
we set out to do.3

A central idea of AFT is the notion of stable revision operator, denote by StA, for
an approximator A. The goal is to determine persistently reachable elements as well
as non-reachable ones in a chain-complete poset, so that a ≤p-monotone operator StA
has fixpoints and a least fixpoint. The latter is called the well-founded fixpoint of A and

3 This example specifies a system in which states are represented by a pair of factors - high and
low. Here, all states are stable except the one in which both factors are high. This state may be
transmitted to an “inconsistent state” with the first factor high and the second low. This state
is the only inconsistent one, and it itself is stable.

Flexible Approximators for Approximating Fixpoint Theory 5

the fixpoints of StA are called the stable fixpoints of A. Let us denote by A1 and A2

the projection of an operator A on L2 on its first and second components, respectively,
i.e., A1(·, v) is A with v fixed, and A2(u, ·) is A with u fixed.

A consistent pair (u, v) can be viewed as an approximation to any exact pair in
the interval [u, v], where u is a lower estimate and v an upper estimate. The operator
StA(u, v) aims at generating a new pair of lower and upper estimates by the respective
fixpoint constructions, as expressed by

StA(u, v) = (lfp(A1(·, v)), lfp(A2(u, ·)). (1)

Since approximatorA is≤p-monotone, so is operator StA, whose least fixpoint can
be computed from the least element (⊥,>) in the given bilattice.

Now let us extend the approach to L2. It is clear that the operator A1(·, v) is
defined on L, and if A is ≤p-monotone on L2 then A1(·, v) is monotone (i.e., ≤-
monotone) onL. AsL is a complete lattice, according to the Knaster-Tarski fixpoint the-
orem, lfp(A1(·, v)) is well-defined. However, there are two problems with lfp(A2(u, ·)).
When StA(u, v) is applied:

1. The operatorA2(u, ·) has no access to v, which restricts how an approximator may
be defined; and

2. It is possible that A2(u, ·) 6∈ [u,>] and if so, A2(u, ·) is not an operator on [u,>]
and lfp(A2(u, ·)) is ill-defined.

As remarked in Introduction, without access to v, we may either under estimate,
or over estimate, negative knowledge. There, we illustrated the problem with over esti-
mate. Here, let us illustrate the problem with under estimate. In the next example, we
sketch the inferences only intuitively (as we are not in a position to provide all relevant
definitions); we will come back to this example in Section 4 (cf. Example 3) once the
underlying approximator is defined.

Example 2. Consider an FOL-program KB = (L,Π) where

L = {∀xC(x) ⊃ (A(x) ∨D(x))} and Π has the following rules:

A(a)← A(a). B(a)← not A(a). D(a)← not B(a).
C(a)← not C ′(a). C ′(a)← not C(a).

From L, if A(a) and D(a) are false, then C(a) must be false thus it should not be
possibly true. Thus, a condition on deriving a possibly true atom is that its negation
is not entailed by L along with already computed (in this case, negative) information,
which is computed as follows:A(a) is false by closed world reasoning. Then, we derive
B(a) which leads to the inference thatD(a) is false. In terms of stable revision, we have
the following sequence starting with the least element (⊥,>) (for brevity, we write a
for A(a), b for B(a), and so on):

(⊥,>)⇒(⊥, {c, c′, b, d})⇒({b}, {c, c′, b, d})⇒({b}, {c, c′, b})⇒({b}, {c′, b})⇒ ...

where, e.g., atoms C(a), C ′(a), B(a), D(a) in the second pair are possibly true, due to
possible derivations by rules. In the last pair, C(a) is not possibly true because ¬C(a)

6 Fangfang Liu, Yi Bi, Md. Solimul Chowdhury, Jia-Huai You, Zhiyong Feng

is entailed by L and the preceding partial interpretation. Without access to v of (u, v)
in computing lfp(A2(u, ·)) of (1), we would not be able to infer ¬C(a) hence block the
derivation of C(a) for being possibly true. This would lead to a problematic situation
where on the one hand C(a) is possibly true and on the other it is provably false.

To tackle this problem, we generalize stable revision by adding an extra parameter
v in the definition of A, i.e., we now define A as a ternary operator A : L3 → L2,
which is called by StA(u, v) with the first parameter fixed to v; i.e., it is the operator
A(v, ·, ·). Let us alternatively write it as Av . Then, the expression in (1) becomes

StA(u, v) = (lfp(A1
v(·, v)), lfp(A2

v(u, ·)) (2)

where the least fixpoints are constructed by respective sequences

x0 = ⊥, x1 = A1
v(x0, v), ..., xα+1 = A1

v(xα, v), ... (3)
y0 = u, y1 = A2

v(u, y0), ..., yα+1 = A2
v(u, yα), (4)

Clearly, the subscript v in A1
v(xi, v) does not add any new information, as v is

already a parameter of the operator,4 but v in A2
v(u, yi) (i ≥ 0) does.

We now formalize this new notion of approximator.

Definition 2. LetO be an operator on L. We say thatA : L3 → L2 is an approximator
of O iff the following conditions are satisfied:

(i) For all v ∈ L, if Av(v, v) is consistent, then Av(v, v) = (O(v),O(v)).
(ii) For all v ∈ L, Av is ≤p-monotone.

(iii) For all v, v′ ∈ L such that v ≤ v′, and all (x, y) ∈ L2, Av′(x, y) ≤p Av(x, y).

Conditions (i) and (ii) are similar to those in Def. 1, and (iii) ensures no loss of
approximation accuracy with smaller v (which is more informed in what are not in v).5

It leads to the notion of monotonicity over different, fixed values v in Av .

Lemma 1. Let A : L3 → L2 be an approximator, and v, v′ ∈ L s.t. v ≤ v′. For all
(x, y), (x′, y′) ∈ L2, if (x, y) ≤p (x′, y′), then Av′(x, y) ≤p Av(x′, y′).

Proof. We can show Av′(x, y) ≤p Av(x, y) ≤p Av(x′, y′). The first inequality is by
part (iii) of Def. 2 and the second by ≤p–monotonicity of Av . ut

We will build our proposal above to an existing solution to the second problem
provided in [2]. Essentially, we need to replace the notion of approximators in [2], by
that of ternary approximators formulated above. Mathematically, this is not a trivial
process. We now give a detailed mathematical development.

In [6], a desirable property, calledA-reliability, is introduced to ensure thatA2(u, ·)
is an operator on [u,>]. Let us generalize this to L2. Given an approximatorA, (u, v) ∈
L2 is called A-reliable if (u, v) ≤p Av(u, v).

4 Note that we never need a parameter to carry (already computed) true atoms, as in computing
lfp(A1(·, v)) we do not make default assumptions, and the monotonicity of the operator A1

guarantees that any previously computed true atoms are derived again.
5 For example, if v is a set of possibly true atoms, smaller v means more atoms that are false.

Flexible Approximators for Approximating Fixpoint Theory 7

However, this property is not strong enough. For example, consider Example 1
again: let L = {⊥,>} and Ax, for any x ∈ L, be an identity mapping everywhere
except that A>(>,>) = (>,⊥). It can be seen that all (u, v) ∈ L2 are A-reliable, but
A2

>(u, ·) is not defined on [u,>]; e.g., when (u, v) is (>,>), we have A2
>(>,>) = ⊥,

which is outside the interval [>,>].
To ensure that A2

v(u, ·) is defined on [u,>], it is sufficient that A2
v(u, u) ≥ u holds,

i.e., the first application of the operator A2
v(u, ·) in (4) yields an element in [u,>].

Lemma 2. Let A : L3 → L2 be an approximating operator. For any (u, v) ∈ L2, if
A2
v(u, u) ≥ u, then for every z ∈ [u,>], A2

v(u, z) ∈ [u,>].

Proof. We have u ≤ A2
v(u, u) ≤ A2

v(u, z). The first inequality is by the condition in
the lemma and the second by (u, z) ≤p (u, u) and ≤p-monotonicity of Av . ut

Question remains as what if the condition A2
v(u, u) ≥ u does not hold, in which

case A2
v(u, ·) is not an operator on [u,>]. To resolve this issue, let us consider the op-

erator A2
v(u, ·) on [⊥,>]. A2

v(u, ·) is clearly defined on [⊥,>]. Furthermore, since Av
is ≤p-monotone on L2, A2

v(u, ·) is ≤-monotone on [⊥,>]. To verify, ∀y ∈ [⊥,>] and
∀y,′ y′ ∈ [⊥,>] such that y′ ≤ y, from ≤p-monotonicity of Av , we have Av(x, y) ≤p
Av(x, y′), it follows Av(u, y) ≤p Av(u, y′) and thus A2

v(u, y
′) ≤ A2

v(u, y).
We are now in a position to define the notion of stable revision.

Definition 3. Let A : L3 → L2 be an approximator of some operator on L. Stable
revision operator StA : L2 → L2 is defined as:

StA(u, v) =

{
(lfp(A1

v(·, v)), lfp(A2
v(u, ·))) where A2

v(u, ·) is on [u,>] u ≤ A2
v(u, u)

(lfp(A1
v(·, v)), lfp(A2

v(u, ·))) where A2
v(u, ·) is on [⊥,>] otherwise

Before we show the main results of this section, let us introduce and extend another
desirable property given in [6]. An element (u, v) ∈ L2 is called A-prudent if u ≤
lfp(A1

v(·, v)). The reason for this property is that in general there is no guarantee that
lfp(A1

v(·, v)) improves u, which is now ensured under A-prudence.
Let us denote by Lrp the set of all A-reliable and A-prudent pairs in L2.
The first lemma below establishes the chain property of StA on Lrp, while the next

shows its ≤p-monotonicity. For brevity, we may write St for StA.

Lemma 3. For any pair (u, v) ∈ Lrp, let St(u,v) = (u′, v′). Then, we have that (u, v) ≤p
(u′, v′), and (u′, v′) is A-reliable and A-prudent.

Proof. (Sketch) By A-prudence, we have u ≤ lfp(A1
v(·, v)). To show v′ ≤ v, by Av-

reliability, we have A2
v(u, v) ≤ v, i.e, v is a pre-fixpoint of A2

v(u, ·). It follows that
if A2

v(u, ·) is an operator on [u,>] then it must be the case that v ∈ [u,>], thus
lfp(A2

v(u, ·)) ≤ v. If A2
v(u, ·) is an operator on [⊥,>], surely v ∈ [⊥,>], then we

still have lfp(A2
v(u, ·)) ≤ v. It then follows (u, v) ≤p (u′, v′).

For the second assertion, as u′ = lfp(A1
v(·, v)) = A1

v(u
′, v), we have A1

v(u
′, v) ≤

A1
v(u

′, v′) by v′ ≤ v. Similarly, as v′ = lfp(A2
v(u, ·)) = A2

v(u, v
′), where A2

v(u, ·) is
either an operator on [u,>] or an operator on [⊥,>], we have A2

v(u
′, v′) ≤ A2

v(u, v
′)

8 Fangfang Liu, Yi Bi, Md. Solimul Chowdhury, Jia-Huai You, Zhiyong Feng

by u ≤ u′, thus (u′, v′) ≤p Av(u′, v′). Next, by condition (iii) of Def. 2, we have
(u′, v′) ≤p Av(u′, v′) ≤ Av′(u′, v′).

Finally, for A-prudence, that u′ ≤ lfp(A1
v′(·, v′)) can be proved by transfinite in-

duction on the sequences lfp(A1
v(·, v)) and lfp(A1

v′(·, v′)). ut

Lemma 4. For any pairs (u, v), (u′, v′) ∈ Lrp such that (u, v) ≤p (u′, v′), we have
St(u, v) ≤p St(u′, v′).

Proof. (Sketch) In all cases, we can show lfp(A1
v(·, v)) ≤p lfp(A1

v′(·, v′)) by transfinite
induction on the two sequences. To show lfp(A2

v′(u
′, ·)) ≤ lfp(A2

v(u, ·)), we need to
consider four cases: (i) A2

v(u, ·) and A2
v′(u

′, ·) are defined on [u,>] and [u′,>] respec-
tively, (ii) both A2

v(u, ·) and A2
v′(u

′, ·) are defined on [⊥,>] (not in the subdomains as
in (i)), (iii) A2

v(u, ·) is defined on [u,>] while A2
v′(u

′, ·) is defined on [⊥,>], and (iv)
A2
v(u, ·) defined on [⊥,>] while A2

v′(u
′, ·) defined on [u′,>].

Let vf = lfp(A2
v(u, ·)) and v′f = lfp(A2

v′(u
′, ·)). We then have vf = A2

v(u, vf) ≥
A2
v(u

′, vf) ≥ A2
v′(u

′, vf) by u ≤ u′ and v′ ≤ v; i.e., vf is a pre-fixpoint of A2
v′(u

′, ·).
On the other hand, we have v′f = A2

v′(u
′, v′f) ≤ A2

v(u, v
′
f), i.e., v′f is a post-fixpoint of

A2
v(u, ·). For case (i), as v′f is in the domain of A2

v′(u
′, ·), it is also in the domain

of A2
v(u, ·) by u ≤ u′; it follows v′f ≤ lfp(A2

v(u, ·)) as it is a post-fixpoint, thus
lfp(A2

v′(u
′, ·)) ≤ lfp(A2

v(u, ·)). For case (ii), asA2
v(u, ·) andA2

v′(u
′, ·) are both defined

on [⊥,>], that v′f ≤ vf naturally follows. For case (iii), since vf is surely in the domain
of A2

v′(u
′, ·) and vf is a pre-fixpoint of A2

v′(u
′, ·), it follows lfp(A2

v′(u
′, ·)) ≤ vf . For

case (iv), also as v′f is in the domain of A2
v(u, ·) and v′f a post-fixpoint of A2

v(u, ·), we
have v′f ≤ lfp(A2

v(u, ·)). We therefore conclude St(u, v) ≤p St(u′, v′). ut

Let C be a chain in Lrp. Denote by C1 and C2, respectively, the projection of C on
its first and second elements. It is clear that (lub(C1), glb(C2)) = lub(C). By adapting
a proof of [6] (the proof of Proposition 3.10), it can be shown that for any chain C of
Lrp, (lub(C1), glb(C2)) = (u, v) is A-reliable and A-prudent. It follows from Lemma
3 that the operator St is defined on Lrp. Then, from Lemma 4 we conclude

Theorem 1. The structure 〈Lrp,≤p〉 is a chain-complete poset that contains the least
element (⊥,>), and StA is a well-defined, increasing, and ≤p-monotone operator in
the poset.

This completes our theoretical work, which shows that the extended AFT is a sound
fixpoint theory; we thus can define:

Definition 4. The least fixpoint of StA on Lrp is called the well-founded fixpoint of A
(and the corresponding semantics the A-WFS) , and the exact fixpoints of StA on Lrp
are called the exact stable fixpoints of A (and the corresponding semantics A-answer
set semantics).

4 FOL-Programs

In this section we briefly explore how the extended AFT may be applied to the study of
semantics for FOL-programs.

Flexible Approximators for Approximating Fixpoint Theory 9

We assume a language of a decidable fragment of first-order logic, denoted LΣ ,
where Σ = 〈Fn;Pn〉, and Fn and Pn are disjoint countable sets of function and pred-
icate symbols, each of which comes with a fixed arity. Constants are 0-ary functions.
Terms are variables, constants, or functions in the form f(t1, ..., tn), where each ti is a
term and f ∈ Fn. First-order formulas, or just formulas, are defined as usual, so are
the notions of satisfaction, model, and entailment.

Let ΦP be a finite subset of Pn and ΦC a nonempty finite set of constants from Fn.
An atom is of the form P (t1, ..., tn) where P ∈ ΦP and each ti is either a constant
from ΦC or a variable.

An FOL-program is a combined knowledge base KB = (L,Π), where L is a first-
order theory of LΣ and Π a rule base, which is a finite set of rules of the form H ←
A1, . . . , Am, not B1, . . . , not Bn, where H and Bi are atoms and Ai are formulas. For
any rule r, we denote by hd(r) the head of the rule and body(r) its body, and define
pos(r) = {A1, ..., Am} and neg(r) = {B1, ..., Bn}.

A ground instance of a rule in Π is obtained by replacing a free variable with a
constant in ΦC . The process of replacing a rule by all its ground instances is called
grounding. From now on, we assume Π is already grounded. When we refer to an
atom/literal/formula, by default we mean it is a ground one.

Given an FOL-program KB = (L,Π), the Herbrand base of Π , denoted HBΠ , is
the set of all ground atoms P (t1, ..., tn), where P ∈ ΦP and ti ∈ ΦC .

For ease of presentation, we assume that ΦP only contains predicate symbols that
occur in Π , and it contains at least all predicate symbols that occur in Π but not in L.
Under this assumption, no predicate symbol that appears in L but not in Π may be in
the underlying Herbrand base, and every predicate symbol appearing in Π but not in
L is necessarily in the underlying Herbrand base. Recall that answer sets and WFS are
only concerned with atoms in the underlying Herbrand base.

Any subset I ⊆ HBΠ is called an interpretation of Π . If I is a set of (ground)
atoms, we define Ī = HBΠ\I , and ¬.I = {¬A | A ∈ I}.

Given lattice 〈2HBΠ ,⊆〉, the induced bilattice is 〈(2HBΠ)2,⊆p〉. A consistent pair
(I, J) in (2HBΠ)2 represents a partial interpretation I ∪ ¬.J̄ . Let (I, J) ∈ (2HBΠ)2

and L a first-order theory. We say that (I, J) is consistent with L if L ∪ I ∪ ¬.J̄ is
consistent, and (I ′, J ′) is a consistent extension of (I, J) if I ⊆ I ′ ⊆ J ′ ⊆ J (if (I, J)
is inconsistent, such (I ′, J ′) does not exist).

Definition 5. Let KB = (L,Π) be an FOL-program, (I, J) ∈ (2HBΠ)2, and φ a lit-
eral. We define two entailment relations, which extend to conjunctions of literals.

– (I, J) |=L φ iff, if φ is an atom A then A ∈ I , if φ is a negative literal not A then
A 6∈ I ,6 and if φ is an FOL-formula then L ∪ I ∪ ¬.J̄ |= φ.

– (I, J)
L φ iff for all consistent extensions (I ′, J ′) of (I, J), (I ′, J ′) |=L φ.

Operator to be Approximated: Let KB = (L,Π) be an FOL-program. Define an
operator KKB : 2HBΠ → 2HBΠ as follows: for any I ∈ 2HBΠ

KKB(I) = {hd(r) | r ∈ Π, (I, I) |=L body(r)} ∪ {A ∈ HBΠ | (I, I) |=L A}
6 Default negation here is evaluated independently of L, which has been called local closed

world reasoning [11].

10 Fangfang Liu, Yi Bi, Md. Solimul Chowdhury, Jia-Huai You, Zhiyong Feng

This operator is essentially the immediate consequence operator augmented by di-
rect positive consequences. Elements in 2HBΠ are (2-valued) interpretations, which are
inherently weak in representing inconsistency. In the extended AFT, it is the inconsis-
tent pairs that tie up this loose end, by explicitly representing negative information.

In the definitions below, we assume an FOL-program KB = (L,Π), (I, J) ∈
(2HBΠ)2, and v ∈ 2HBΠ such that J ⊆ v.

Definition 6. (Operator Φ
KB ,v: Standard Semantics) For all H ∈ HBΠ ,

• H ∈ Φ1
KB,v(I, J) iff one of the following holds

(a) (I, v) |=L H .
(b) ∃r ∈ Π with hd(r) = H , s.t. ∀φ ∈ body(r), (I, J)
L φ.

• H ∈ Φ2
KB,v(I, J) iff (I, v) 6|=L ¬H and one of the following holds

(a) ∃I ′, J ′(I ⊆ I ′ ⊆ J ′ ⊆ J), (I ′, J ′ ∪ J̄) |=L H .
(b) ∃r ∈ Π with hd(r) = H , s.t. ∀φ ∈ body(r), ∃I ′, J ′(I ⊆ I ′ ⊆ J ′ ⊆ J),

(I ′, J ′ ∪ J̄) |=L φ.

Operator Φ1
KB,v computes atoms that must be true, either due to directly entailed

w.r.t. L (part (a)), or persistently derivable (part (b)). Operator Φ2
KB,v on the other hand

computes possibly true atoms, under the condition that their complements are not en-
tailed by (I, v), that are either potentially entailed (part (a)), or possibly derivable (part
(b), in which each body literal may be derived from a different (I ′, J ′)).

Note that the pair (I, J) in Φ2
KB,v(I, J) serves as an interval [I, J] in the sense that

any atom in it may be assigned arbitrarily, as expressed in (I ′, J ′ ∪ J̄), as a partial
interpretation that extends I , in that the atoms in I ′ are assigned to true and those in J
but not in J ′ are assigned to false.

If (I, v) is inconsistent with L, then the result is (HBΠ , ∅).

Lemma 5. ΦKB is an approximator of KKB .

Example 3. Consider Example 2 again: KB = (L,Π) where L = {∀xC(x) ⊃ (A(x)∨
D(x))} and Π = {A(a) ← A(a). B(a) ← not A(a). D(a) ← not B(a). C(a) ←
not C ′(a). C ′(a) ← not C(a).} The stable revision operator, StΦKB in this case,
generates the below sequence (recall that we write a for A(a), b for B(a), and so on):

(∅,HBΠ)⇒ (∅, {c, c′, b, d})⇒ ({b}, {c, c′, b, d})⇒ ({b}, {c, c′, b})⇒ ({b}, {c′, b})
⇒ ({c′, b}, {c′, b})

A(a) is false by the second pair, which leads to the derivation of B(a) and then to the
inference that D(a) is false, in the next two steps. Next, as ¬C(a) is entailed by L,
C(a) is no longer possible true. Finally, C ′(a) is derived to be true.

The above example shows how “under estimate” is corrected under the extended
AFT here, which improves the work of [2]. In the next example, we illustrate how
inconsistency is handled.

Flexible Approximators for Approximating Fixpoint Theory 11

Example 4. Let KB = ({¬A(a)}, Π) where Π = {A(a) ← not B(a); B(a) ←
B(a); C(a) ←}. Let ΦP = {A,B,C} and ΦC = {a}. The well-founded fixpoint of
ΦKB is computed by the stable revision operator StΦKB as follows:

(∅,HBΠ)⇒ ({C(a)}, {C(a)})⇒ (HBΠ , {C(a)})⇒ (HBΠ , ∅})

From the second pair, we get lfp(Φ1
KB,v′(·, {C(a)})) = HBΠ , due to inconsistency

from the derivation ofA(a). Let us denote the third pair by (u, v). BecauseΦ2
KB,v(u, u) =

∅ (thus 6≥ u), the second case in Def. 3 is triggered, and leads to lfp(Φ2
KB,v(u, ·)) = ∅,

which together with lfp(Φ1
KB,v(·, v)) yields the last pair as the fixpoint.

The well-founded and answer set semantics based on the operator ΦKB are called
standard, because they are generalizations of the WFS and answer set semantics for
normal logic programs.

Theorem 2. Let KB = (∅, Π) be a normal program, i.e., L = ∅ and Π is a set of
normal rules. Then, the Φ-WFS of KB coincides with the WFS of Π [19], and Φ-answer
set semantics coincides with the standard stable model semantics of Π [10].

5 Related Work and Future Directions

AFT has applied to DL-programs [8], which can be represented by HEX-programs [1]
and aggregate programs [14], where an approximator can be defined so that the well-
founded fixpoint defines the WFS [9] and the exact stable fixpoints define the well-
supported answer set semantics [16]. In [12], a well-founded semantics for combing
rules with DLs is defined. In both approaches above, syntactic restrictions are imposed
so that the least fixpoint is always constructed over sets of consistent literals.

Our work here is built on top of the approach in [2]. Because there is no explicit
representation of entailed negative information in approximators, the phenomenon of
over estimate and under estimate does arise in the approach of [2].

In our extended AFT, inconsistency handling relies on how an approximator is de-
fined. So far, the approximators defined allow trivialization to take place, but practically
one may define approximators so that non-trivialization is supported. E.g., in Example
4, one may define the approximator ΦKB in a way that ({C(a)}, {C(a)}) is stable re-
vised to ({A(a), C(a)}, {C(a)}), whereA(a) being true but not possible true indicates
where inconsistency initially occurred. Further investigation in this direction is needed.

Recently, the theory of grounded fixpoints has generated some interest [4]. Again,
the work in general does not treat inconsistent pairs on bilattices. It is interesting to
investigate how the approach proposed in this paper may be applied. In addition, the
notion of unfounded atoms by non-derivation of rules with arbitrary formulas in bod-
ies [3, 4] is interesting. In general, the relationship between unfoundedness and stable
revision for various classes of programs, including FOL-programs, requires a further
study.

In this paper, we only provided an initial attempt to show applications of the ex-
tended AFT. We will look into other applications where a separation of established
negation and default negation is desirable. Tightly coupled multi-context systems is a
potential target.

12 Fangfang Liu, Yi Bi, Md. Solimul Chowdhury, Jia-Huai You, Zhiyong Feng

References

1. Christian Antic, Thomas Eiter, and Michael Fink. Hex semantics via approximation fixpoint
theory. In Proc. LPNMR, pages 102–115, 2013.

2. Yi Bi, Jia-Huai You, and Zhiyong Feng. A generalization of approximation fixpoint theory
and application. In Proc. 8th Int’l Conference on Web Reasoning and Rule Systems, pages
45–59, 2014.

3. Bart Bogaerts, Joost Vennekens, and Marc Denecker. Grounded fixpoints. In Proc. AAAI’15,
pages 1453–1459, 2015.

4. Bart Bogaerts, Joost Vennekens, and Marc Denecker. Grounded fixpoints and their applica-
tions in knowledge representation. Artif. Intell., 224:51–71, 2015.

5. Marc Denecker, Victor W. Marek, and Miroslaw Truszczynski. Uniform semantic treatment
of default and autoepistemic logics. Artif. Intell., 143(1):79–122, 2003.

6. Marc Denecker, Victor W. Marek, and Miroslaw Truszczynski. Ultimate approximation
and its application in nonmonotonic knowledge representation systems. Information and
Computation, 192(1):84–121, 2004.

7. Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

8. Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and Hans
Tompits. Combining answer set programming with description logics for the semantic web.
Artif. Intell., 172(12-13):1495–1539, 2008.

9. Thomas Eiter, Thomas Lukasiewicz, Giovambattista Ianni, and Roman Schindlauer. Well-
founded semantics for description logic programs in the semantic web. ACM Transactions
on Computational Logic, 12(2), 2011.

10. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Proc. ICLP’88, pages 1070–1080, 1988.

11. Matthias Knorr, José Júlio Alferes, and Pascal Hitzler. Local closed world reasoning with
description logics under the well-founded semantics. Artif. Intell., 175(9-10):1528–1554,
2011.

12. Thomas Lukasiewicz. A novel combination of answer set programming with description
logics for the semantic web. IEEE TKDE, 22(11):1577–1592, 2010.

13. Boris Motik and Riccardo Rosati. Reconciling description logics and rules. J. ACM, 57(5):1–
62, 2010.

14. Maurice Bruynooghe Nikolay Pelov, Marc Denecker. Well-founded and stable semantics of
logic programs with aggregates. Theory and Practice of Logic Programming, 7:301–353,
2007.

15. Riccardo Rosati. DL+log: Tight integration of description logics and disjunctive datalog. In
Proc. KR’06, pages 68–78, 2006.

16. Yi-Dong Shen and Kewen Wang. Extending logic programs with description logic expres-
sions for the semantic web. In Proc. Int’l Semantic Web Conference, pages 633–648, 2011.

17. Hannes Strass. Approximating operators and semantics for abstract dialectical frameworks.
Artif. Intell., 205:39–70, 2013.

18. Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5:2:285–309, 1955.

19. A. van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general logic pro-
grams. J. ACM, 38(3):620–650, 1991.

20. Joost Vennekens, Marc Denecker, and Maurice Bruynooghe. FO(ID) as an extension of DL
with rules. Ann. Math. Artif. Intell., 58(1-2):85–115, 2010.

21. Qian Yang, Jia-Huai You, and Zhiyong Feng. Integrating rules and description logics by
circumscription. In Proc. AAAI’11, 2011.

